YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Demo

Please try this ➤➤➤ Colab Notebook Demo (click me!)

Context Response human_vs_rand score
I love NLP! He is a great basketball player. 0.027
I love NLP! Can you tell me how it works? 0.754
I love NLP! Me too! 0.631

The human_vs_rand score predicts how likely the response is corresponding to the given context, rather than a random response.

DialogRPT-human-vs-rand

Dialog Ranking Pretrained Transformers

How likely a dialog response is upvoted 👍 and/or gets replied 💬?

This is what DialogRPT is learned to predict. It is a set of dialog response ranking models proposed by Microsoft Research NLP Group trained on 100 + millions of human feedback data. It can be used to improve existing dialog generation model (e.g., DialoGPT) by re-ranking the generated response candidates.

Quick Links:

We considered the following tasks and provided corresponding pretrained models.

Task Description Pretrained model
Human feedback given a context and its two human responses, predict...
updown ... which gets more upvotes? model card
width ... which gets more direct replies? model card
depth ... which gets longer follow-up thread? model card
Human-like (human vs fake) given a context and one human response, distinguish it with...
human_vs_rand ... a random human response this model
human_vs_machine ... a machine generated response model card

Contact:

Please create an issue on our repo

Citation:

@inproceedings{gao2020dialogrpt,
    title={Dialogue Response RankingTraining with Large-Scale Human Feedback Data},
    author={Xiang Gao and Yizhe Zhang and Michel Galley and Chris Brockett and Bill Dolan},
    year={2020},
    booktitle={EMNLP}
}
Downloads last month
88
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.