michaelszhu's picture
End of training
f363fc1 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: BANG - v2 (EN)
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Radio-Modified Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: en
          split: test
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 20.561047043748857

BANG - v2 (EN)

This model is a fine-tuned version of openai/whisper-large-v3 on the Radio-Modified Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2650
  • Wer: 20.5610

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7709 0.25 1000 0.6383 35.6607
0.4424 1.2443 2000 0.4248 26.8037
0.2823 2.2385 3000 0.3117 22.4425
0.2429 3.2328 4000 0.2650 20.5610

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1