ct2fast-gte-base / README.md
michaelfeil's picture
Upload thenlper/gte-base ctranslate2 weights
5e28552
---
tags:
- ctranslate2
- int8
- float16
- mteb
- sentence-similarity
- sentence-transformers
- Sentence Transformers
model-index:
- name: gte-base
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.17910447761193
- type: ap
value: 36.827146398068926
- type: f1
value: 68.11292888046363
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.77345000000001
- type: ap
value: 88.33530426691347
- type: f1
value: 91.76549906404642
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.964
- type: f1
value: 48.22995586184998
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.147999999999996
- type: map_at_10
value: 48.253
- type: map_at_100
value: 49.038
- type: map_at_1000
value: 49.042
- type: map_at_3
value: 43.433
- type: map_at_5
value: 46.182
- type: mrr_at_1
value: 32.717
- type: mrr_at_10
value: 48.467
- type: mrr_at_100
value: 49.252
- type: mrr_at_1000
value: 49.254999999999995
- type: mrr_at_3
value: 43.599
- type: mrr_at_5
value: 46.408
- type: ndcg_at_1
value: 32.147999999999996
- type: ndcg_at_10
value: 57.12199999999999
- type: ndcg_at_100
value: 60.316
- type: ndcg_at_1000
value: 60.402
- type: ndcg_at_3
value: 47.178
- type: ndcg_at_5
value: 52.146
- type: precision_at_1
value: 32.147999999999996
- type: precision_at_10
value: 8.542
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 19.346
- type: precision_at_5
value: 14.026
- type: recall_at_1
value: 32.147999999999996
- type: recall_at_10
value: 85.42
- type: recall_at_100
value: 99.004
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 58.037000000000006
- type: recall_at_5
value: 70.128
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.59706013699614
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.01463593002057
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.80250355752458
- type: mrr
value: 74.79455216989844
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 89.87448576082345
- type: cos_sim_spearman
value: 87.64235843637468
- type: euclidean_pearson
value: 88.4901825511062
- type: euclidean_spearman
value: 87.74537283182033
- type: manhattan_pearson
value: 88.39040638362911
- type: manhattan_spearman
value: 87.62669542888003
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.06818181818183
- type: f1
value: 85.02524460098233
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.20471092679967
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.58967592147641
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.411
- type: map_at_10
value: 45.162
- type: map_at_100
value: 46.717
- type: map_at_1000
value: 46.836
- type: map_at_3
value: 41.428
- type: map_at_5
value: 43.54
- type: mrr_at_1
value: 39.914
- type: mrr_at_10
value: 51.534
- type: mrr_at_100
value: 52.185
- type: mrr_at_1000
value: 52.22
- type: mrr_at_3
value: 49.046
- type: mrr_at_5
value: 50.548
- type: ndcg_at_1
value: 39.914
- type: ndcg_at_10
value: 52.235
- type: ndcg_at_100
value: 57.4
- type: ndcg_at_1000
value: 58.982
- type: ndcg_at_3
value: 47.332
- type: ndcg_at_5
value: 49.62
- type: precision_at_1
value: 39.914
- type: precision_at_10
value: 10.258000000000001
- type: precision_at_100
value: 1.6219999999999999
- type: precision_at_1000
value: 0.20500000000000002
- type: precision_at_3
value: 23.462
- type: precision_at_5
value: 16.71
- type: recall_at_1
value: 32.411
- type: recall_at_10
value: 65.408
- type: recall_at_100
value: 87.248
- type: recall_at_1000
value: 96.951
- type: recall_at_3
value: 50.349999999999994
- type: recall_at_5
value: 57.431
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.911
- type: map_at_10
value: 42.608000000000004
- type: map_at_100
value: 43.948
- type: map_at_1000
value: 44.089
- type: map_at_3
value: 39.652
- type: map_at_5
value: 41.236
- type: mrr_at_1
value: 40.064
- type: mrr_at_10
value: 48.916
- type: mrr_at_100
value: 49.539
- type: mrr_at_1000
value: 49.583
- type: mrr_at_3
value: 46.741
- type: mrr_at_5
value: 48.037
- type: ndcg_at_1
value: 40.064
- type: ndcg_at_10
value: 48.442
- type: ndcg_at_100
value: 52.798
- type: ndcg_at_1000
value: 54.871
- type: ndcg_at_3
value: 44.528
- type: ndcg_at_5
value: 46.211
- type: precision_at_1
value: 40.064
- type: precision_at_10
value: 9.178
- type: precision_at_100
value: 1.452
- type: precision_at_1000
value: 0.193
- type: precision_at_3
value: 21.614
- type: precision_at_5
value: 15.185
- type: recall_at_1
value: 31.911
- type: recall_at_10
value: 58.155
- type: recall_at_100
value: 76.46300000000001
- type: recall_at_1000
value: 89.622
- type: recall_at_3
value: 46.195
- type: recall_at_5
value: 51.288999999999994
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.597
- type: map_at_10
value: 54.290000000000006
- type: map_at_100
value: 55.340999999999994
- type: map_at_1000
value: 55.388999999999996
- type: map_at_3
value: 50.931000000000004
- type: map_at_5
value: 52.839999999999996
- type: mrr_at_1
value: 46.646
- type: mrr_at_10
value: 57.524
- type: mrr_at_100
value: 58.225
- type: mrr_at_1000
value: 58.245999999999995
- type: mrr_at_3
value: 55.235
- type: mrr_at_5
value: 56.589
- type: ndcg_at_1
value: 46.646
- type: ndcg_at_10
value: 60.324999999999996
- type: ndcg_at_100
value: 64.30900000000001
- type: ndcg_at_1000
value: 65.19
- type: ndcg_at_3
value: 54.983000000000004
- type: ndcg_at_5
value: 57.621
- type: precision_at_1
value: 46.646
- type: precision_at_10
value: 9.774
- type: precision_at_100
value: 1.265
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 24.911
- type: precision_at_5
value: 16.977999999999998
- type: recall_at_1
value: 40.597
- type: recall_at_10
value: 74.773
- type: recall_at_100
value: 91.61200000000001
- type: recall_at_1000
value: 97.726
- type: recall_at_3
value: 60.458
- type: recall_at_5
value: 66.956
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.122
- type: map_at_10
value: 36.711
- type: map_at_100
value: 37.775
- type: map_at_1000
value: 37.842999999999996
- type: map_at_3
value: 33.693
- type: map_at_5
value: 35.607
- type: mrr_at_1
value: 29.153000000000002
- type: mrr_at_10
value: 38.873999999999995
- type: mrr_at_100
value: 39.739000000000004
- type: mrr_at_1000
value: 39.794000000000004
- type: mrr_at_3
value: 36.102000000000004
- type: mrr_at_5
value: 37.876
- type: ndcg_at_1
value: 29.153000000000002
- type: ndcg_at_10
value: 42.048
- type: ndcg_at_100
value: 47.144999999999996
- type: ndcg_at_1000
value: 48.901
- type: ndcg_at_3
value: 36.402
- type: ndcg_at_5
value: 39.562999999999995
- type: precision_at_1
value: 29.153000000000002
- type: precision_at_10
value: 6.4750000000000005
- type: precision_at_100
value: 0.951
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 15.479999999999999
- type: precision_at_5
value: 11.028
- type: recall_at_1
value: 27.122
- type: recall_at_10
value: 56.279999999999994
- type: recall_at_100
value: 79.597
- type: recall_at_1000
value: 92.804
- type: recall_at_3
value: 41.437000000000005
- type: recall_at_5
value: 49.019
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.757
- type: map_at_10
value: 26.739
- type: map_at_100
value: 28.015
- type: map_at_1000
value: 28.127999999999997
- type: map_at_3
value: 23.986
- type: map_at_5
value: 25.514
- type: mrr_at_1
value: 22.015
- type: mrr_at_10
value: 31.325999999999997
- type: mrr_at_100
value: 32.368
- type: mrr_at_1000
value: 32.426
- type: mrr_at_3
value: 28.897000000000002
- type: mrr_at_5
value: 30.147000000000002
- type: ndcg_at_1
value: 22.015
- type: ndcg_at_10
value: 32.225
- type: ndcg_at_100
value: 38.405
- type: ndcg_at_1000
value: 40.932
- type: ndcg_at_3
value: 27.403
- type: ndcg_at_5
value: 29.587000000000003
- type: precision_at_1
value: 22.015
- type: precision_at_10
value: 5.9830000000000005
- type: precision_at_100
value: 1.051
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 13.391
- type: precision_at_5
value: 9.602
- type: recall_at_1
value: 17.757
- type: recall_at_10
value: 44.467
- type: recall_at_100
value: 71.53699999999999
- type: recall_at_1000
value: 89.281
- type: recall_at_3
value: 31.095
- type: recall_at_5
value: 36.818
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.354
- type: map_at_10
value: 42.134
- type: map_at_100
value: 43.429
- type: map_at_1000
value: 43.532
- type: map_at_3
value: 38.491
- type: map_at_5
value: 40.736
- type: mrr_at_1
value: 37.247
- type: mrr_at_10
value: 47.775
- type: mrr_at_100
value: 48.522999999999996
- type: mrr_at_1000
value: 48.567
- type: mrr_at_3
value: 45.059
- type: mrr_at_5
value: 46.811
- type: ndcg_at_1
value: 37.247
- type: ndcg_at_10
value: 48.609
- type: ndcg_at_100
value: 53.782
- type: ndcg_at_1000
value: 55.666000000000004
- type: ndcg_at_3
value: 42.866
- type: ndcg_at_5
value: 46.001
- type: precision_at_1
value: 37.247
- type: precision_at_10
value: 8.892999999999999
- type: precision_at_100
value: 1.341
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 20.5
- type: precision_at_5
value: 14.976
- type: recall_at_1
value: 30.354
- type: recall_at_10
value: 62.273
- type: recall_at_100
value: 83.65599999999999
- type: recall_at_1000
value: 95.82000000000001
- type: recall_at_3
value: 46.464
- type: recall_at_5
value: 54.225
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.949
- type: map_at_10
value: 37.230000000000004
- type: map_at_100
value: 38.644
- type: map_at_1000
value: 38.751999999999995
- type: map_at_3
value: 33.816
- type: map_at_5
value: 35.817
- type: mrr_at_1
value: 33.446999999999996
- type: mrr_at_10
value: 42.970000000000006
- type: mrr_at_100
value: 43.873
- type: mrr_at_1000
value: 43.922
- type: mrr_at_3
value: 40.467999999999996
- type: mrr_at_5
value: 41.861
- type: ndcg_at_1
value: 33.446999999999996
- type: ndcg_at_10
value: 43.403000000000006
- type: ndcg_at_100
value: 49.247
- type: ndcg_at_1000
value: 51.361999999999995
- type: ndcg_at_3
value: 38.155
- type: ndcg_at_5
value: 40.643
- type: precision_at_1
value: 33.446999999999996
- type: precision_at_10
value: 8.128
- type: precision_at_100
value: 1.274
- type: precision_at_1000
value: 0.163
- type: precision_at_3
value: 18.493000000000002
- type: precision_at_5
value: 13.333
- type: recall_at_1
value: 26.949
- type: recall_at_10
value: 56.006
- type: recall_at_100
value: 80.99199999999999
- type: recall_at_1000
value: 95.074
- type: recall_at_3
value: 40.809
- type: recall_at_5
value: 47.57
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.243583333333333
- type: map_at_10
value: 37.193250000000006
- type: map_at_100
value: 38.44833333333334
- type: map_at_1000
value: 38.56083333333333
- type: map_at_3
value: 34.06633333333333
- type: map_at_5
value: 35.87858333333334
- type: mrr_at_1
value: 32.291583333333335
- type: mrr_at_10
value: 41.482749999999996
- type: mrr_at_100
value: 42.33583333333333
- type: mrr_at_1000
value: 42.38683333333333
- type: mrr_at_3
value: 38.952999999999996
- type: mrr_at_5
value: 40.45333333333333
- type: ndcg_at_1
value: 32.291583333333335
- type: ndcg_at_10
value: 42.90533333333334
- type: ndcg_at_100
value: 48.138666666666666
- type: ndcg_at_1000
value: 50.229083333333335
- type: ndcg_at_3
value: 37.76133333333334
- type: ndcg_at_5
value: 40.31033333333334
- type: precision_at_1
value: 32.291583333333335
- type: precision_at_10
value: 7.585583333333333
- type: precision_at_100
value: 1.2045000000000001
- type: precision_at_1000
value: 0.15733333333333335
- type: precision_at_3
value: 17.485416666666666
- type: precision_at_5
value: 12.5145
- type: recall_at_1
value: 27.243583333333333
- type: recall_at_10
value: 55.45108333333334
- type: recall_at_100
value: 78.25858333333335
- type: recall_at_1000
value: 92.61716666666665
- type: recall_at_3
value: 41.130583333333334
- type: recall_at_5
value: 47.73133333333334
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.325
- type: map_at_10
value: 32.795
- type: map_at_100
value: 33.96
- type: map_at_1000
value: 34.054
- type: map_at_3
value: 30.64
- type: map_at_5
value: 31.771
- type: mrr_at_1
value: 29.908
- type: mrr_at_10
value: 35.83
- type: mrr_at_100
value: 36.868
- type: mrr_at_1000
value: 36.928
- type: mrr_at_3
value: 33.896
- type: mrr_at_5
value: 34.893
- type: ndcg_at_1
value: 29.908
- type: ndcg_at_10
value: 36.746
- type: ndcg_at_100
value: 42.225
- type: ndcg_at_1000
value: 44.523
- type: ndcg_at_3
value: 32.82
- type: ndcg_at_5
value: 34.583000000000006
- type: precision_at_1
value: 29.908
- type: precision_at_10
value: 5.6129999999999995
- type: precision_at_100
value: 0.9079999999999999
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 13.753000000000002
- type: precision_at_5
value: 9.417
- type: recall_at_1
value: 26.325
- type: recall_at_10
value: 45.975
- type: recall_at_100
value: 70.393
- type: recall_at_1000
value: 87.217
- type: recall_at_3
value: 35.195
- type: recall_at_5
value: 39.69
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.828
- type: map_at_10
value: 25.759
- type: map_at_100
value: 26.961000000000002
- type: map_at_1000
value: 27.094
- type: map_at_3
value: 23.166999999999998
- type: map_at_5
value: 24.610000000000003
- type: mrr_at_1
value: 21.61
- type: mrr_at_10
value: 29.605999999999998
- type: mrr_at_100
value: 30.586000000000002
- type: mrr_at_1000
value: 30.664
- type: mrr_at_3
value: 27.214
- type: mrr_at_5
value: 28.571
- type: ndcg_at_1
value: 21.61
- type: ndcg_at_10
value: 30.740000000000002
- type: ndcg_at_100
value: 36.332
- type: ndcg_at_1000
value: 39.296
- type: ndcg_at_3
value: 26.11
- type: ndcg_at_5
value: 28.297
- type: precision_at_1
value: 21.61
- type: precision_at_10
value: 5.643
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.14400000000000002
- type: precision_at_3
value: 12.4
- type: precision_at_5
value: 9.119
- type: recall_at_1
value: 17.828
- type: recall_at_10
value: 41.876000000000005
- type: recall_at_100
value: 66.648
- type: recall_at_1000
value: 87.763
- type: recall_at_3
value: 28.957
- type: recall_at_5
value: 34.494
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.921000000000003
- type: map_at_10
value: 37.156
- type: map_at_100
value: 38.399
- type: map_at_1000
value: 38.498
- type: map_at_3
value: 34.134
- type: map_at_5
value: 35.936
- type: mrr_at_1
value: 32.649
- type: mrr_at_10
value: 41.19
- type: mrr_at_100
value: 42.102000000000004
- type: mrr_at_1000
value: 42.157
- type: mrr_at_3
value: 38.464
- type: mrr_at_5
value: 40.148
- type: ndcg_at_1
value: 32.649
- type: ndcg_at_10
value: 42.679
- type: ndcg_at_100
value: 48.27
- type: ndcg_at_1000
value: 50.312
- type: ndcg_at_3
value: 37.269000000000005
- type: ndcg_at_5
value: 40.055
- type: precision_at_1
value: 32.649
- type: precision_at_10
value: 7.155
- type: precision_at_100
value: 1.124
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_3
value: 16.791
- type: precision_at_5
value: 12.015
- type: recall_at_1
value: 27.921000000000003
- type: recall_at_10
value: 55.357
- type: recall_at_100
value: 79.476
- type: recall_at_1000
value: 93.314
- type: recall_at_3
value: 40.891
- type: recall_at_5
value: 47.851
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.524
- type: map_at_10
value: 35.135
- type: map_at_100
value: 36.665
- type: map_at_1000
value: 36.886
- type: map_at_3
value: 31.367
- type: map_at_5
value: 33.724
- type: mrr_at_1
value: 30.631999999999998
- type: mrr_at_10
value: 39.616
- type: mrr_at_100
value: 40.54
- type: mrr_at_1000
value: 40.585
- type: mrr_at_3
value: 36.462
- type: mrr_at_5
value: 38.507999999999996
- type: ndcg_at_1
value: 30.631999999999998
- type: ndcg_at_10
value: 41.61
- type: ndcg_at_100
value: 47.249
- type: ndcg_at_1000
value: 49.662
- type: ndcg_at_3
value: 35.421
- type: ndcg_at_5
value: 38.811
- type: precision_at_1
value: 30.631999999999998
- type: precision_at_10
value: 8.123
- type: precision_at_100
value: 1.5810000000000002
- type: precision_at_1000
value: 0.245
- type: precision_at_3
value: 16.337
- type: precision_at_5
value: 12.568999999999999
- type: recall_at_1
value: 25.524
- type: recall_at_10
value: 54.994
- type: recall_at_100
value: 80.03099999999999
- type: recall_at_1000
value: 95.25099999999999
- type: recall_at_3
value: 37.563
- type: recall_at_5
value: 46.428999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.224
- type: map_at_10
value: 30.599999999999998
- type: map_at_100
value: 31.526
- type: map_at_1000
value: 31.629
- type: map_at_3
value: 27.491
- type: map_at_5
value: 29.212
- type: mrr_at_1
value: 24.214
- type: mrr_at_10
value: 32.632
- type: mrr_at_100
value: 33.482
- type: mrr_at_1000
value: 33.550000000000004
- type: mrr_at_3
value: 29.852
- type: mrr_at_5
value: 31.451
- type: ndcg_at_1
value: 24.214
- type: ndcg_at_10
value: 35.802
- type: ndcg_at_100
value: 40.502
- type: ndcg_at_1000
value: 43.052
- type: ndcg_at_3
value: 29.847
- type: ndcg_at_5
value: 32.732
- type: precision_at_1
value: 24.214
- type: precision_at_10
value: 5.804
- type: precision_at_100
value: 0.885
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 12.692999999999998
- type: precision_at_5
value: 9.242
- type: recall_at_1
value: 22.224
- type: recall_at_10
value: 49.849
- type: recall_at_100
value: 71.45
- type: recall_at_1000
value: 90.583
- type: recall_at_3
value: 34.153
- type: recall_at_5
value: 41.004000000000005
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 12.386999999999999
- type: map_at_10
value: 20.182
- type: map_at_100
value: 21.86
- type: map_at_1000
value: 22.054000000000002
- type: map_at_3
value: 17.165
- type: map_at_5
value: 18.643
- type: mrr_at_1
value: 26.906000000000002
- type: mrr_at_10
value: 37.907999999999994
- type: mrr_at_100
value: 38.868
- type: mrr_at_1000
value: 38.913
- type: mrr_at_3
value: 34.853
- type: mrr_at_5
value: 36.567
- type: ndcg_at_1
value: 26.906000000000002
- type: ndcg_at_10
value: 28.103
- type: ndcg_at_100
value: 35.073
- type: ndcg_at_1000
value: 38.653
- type: ndcg_at_3
value: 23.345
- type: ndcg_at_5
value: 24.828
- type: precision_at_1
value: 26.906000000000002
- type: precision_at_10
value: 8.547
- type: precision_at_100
value: 1.617
- type: precision_at_1000
value: 0.22799999999999998
- type: precision_at_3
value: 17.025000000000002
- type: precision_at_5
value: 12.834000000000001
- type: recall_at_1
value: 12.386999999999999
- type: recall_at_10
value: 33.306999999999995
- type: recall_at_100
value: 57.516
- type: recall_at_1000
value: 77.74799999999999
- type: recall_at_3
value: 21.433
- type: recall_at_5
value: 25.915
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.322
- type: map_at_10
value: 20.469
- type: map_at_100
value: 28.638
- type: map_at_1000
value: 30.433
- type: map_at_3
value: 14.802000000000001
- type: map_at_5
value: 17.297
- type: mrr_at_1
value: 68.75
- type: mrr_at_10
value: 76.29599999999999
- type: mrr_at_100
value: 76.62400000000001
- type: mrr_at_1000
value: 76.633
- type: mrr_at_3
value: 75.083
- type: mrr_at_5
value: 75.771
- type: ndcg_at_1
value: 54.87499999999999
- type: ndcg_at_10
value: 41.185
- type: ndcg_at_100
value: 46.400000000000006
- type: ndcg_at_1000
value: 54.223
- type: ndcg_at_3
value: 45.489000000000004
- type: ndcg_at_5
value: 43.161
- type: precision_at_1
value: 68.75
- type: precision_at_10
value: 32.300000000000004
- type: precision_at_100
value: 10.607999999999999
- type: precision_at_1000
value: 2.237
- type: precision_at_3
value: 49.083
- type: precision_at_5
value: 41.6
- type: recall_at_1
value: 9.322
- type: recall_at_10
value: 25.696
- type: recall_at_100
value: 52.898
- type: recall_at_1000
value: 77.281
- type: recall_at_3
value: 15.943
- type: recall_at_5
value: 19.836000000000002
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 48.650000000000006
- type: f1
value: 43.528467245539396
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 66.56
- type: map_at_10
value: 76.767
- type: map_at_100
value: 77.054
- type: map_at_1000
value: 77.068
- type: map_at_3
value: 75.29299999999999
- type: map_at_5
value: 76.24
- type: mrr_at_1
value: 71.842
- type: mrr_at_10
value: 81.459
- type: mrr_at_100
value: 81.58800000000001
- type: mrr_at_1000
value: 81.59100000000001
- type: mrr_at_3
value: 80.188
- type: mrr_at_5
value: 81.038
- type: ndcg_at_1
value: 71.842
- type: ndcg_at_10
value: 81.51899999999999
- type: ndcg_at_100
value: 82.544
- type: ndcg_at_1000
value: 82.829
- type: ndcg_at_3
value: 78.92
- type: ndcg_at_5
value: 80.406
- type: precision_at_1
value: 71.842
- type: precision_at_10
value: 10.066
- type: precision_at_100
value: 1.076
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 30.703000000000003
- type: precision_at_5
value: 19.301
- type: recall_at_1
value: 66.56
- type: recall_at_10
value: 91.55
- type: recall_at_100
value: 95.67099999999999
- type: recall_at_1000
value: 97.539
- type: recall_at_3
value: 84.46900000000001
- type: recall_at_5
value: 88.201
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 20.087
- type: map_at_10
value: 32.830999999999996
- type: map_at_100
value: 34.814
- type: map_at_1000
value: 34.999
- type: map_at_3
value: 28.198
- type: map_at_5
value: 30.779
- type: mrr_at_1
value: 38.889
- type: mrr_at_10
value: 48.415
- type: mrr_at_100
value: 49.187
- type: mrr_at_1000
value: 49.226
- type: mrr_at_3
value: 45.705
- type: mrr_at_5
value: 47.225
- type: ndcg_at_1
value: 38.889
- type: ndcg_at_10
value: 40.758
- type: ndcg_at_100
value: 47.671
- type: ndcg_at_1000
value: 50.744
- type: ndcg_at_3
value: 36.296
- type: ndcg_at_5
value: 37.852999999999994
- type: precision_at_1
value: 38.889
- type: precision_at_10
value: 11.466
- type: precision_at_100
value: 1.8499999999999999
- type: precision_at_1000
value: 0.24
- type: precision_at_3
value: 24.126
- type: precision_at_5
value: 18.21
- type: recall_at_1
value: 20.087
- type: recall_at_10
value: 48.042
- type: recall_at_100
value: 73.493
- type: recall_at_1000
value: 91.851
- type: recall_at_3
value: 32.694
- type: recall_at_5
value: 39.099000000000004
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.096000000000004
- type: map_at_10
value: 56.99999999999999
- type: map_at_100
value: 57.914
- type: map_at_1000
value: 57.984
- type: map_at_3
value: 53.900999999999996
- type: map_at_5
value: 55.827000000000005
- type: mrr_at_1
value: 76.19200000000001
- type: mrr_at_10
value: 81.955
- type: mrr_at_100
value: 82.164
- type: mrr_at_1000
value: 82.173
- type: mrr_at_3
value: 80.963
- type: mrr_at_5
value: 81.574
- type: ndcg_at_1
value: 76.19200000000001
- type: ndcg_at_10
value: 65.75
- type: ndcg_at_100
value: 68.949
- type: ndcg_at_1000
value: 70.342
- type: ndcg_at_3
value: 61.29
- type: ndcg_at_5
value: 63.747
- type: precision_at_1
value: 76.19200000000001
- type: precision_at_10
value: 13.571
- type: precision_at_100
value: 1.6070000000000002
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 38.663
- type: precision_at_5
value: 25.136999999999997
- type: recall_at_1
value: 38.096000000000004
- type: recall_at_10
value: 67.853
- type: recall_at_100
value: 80.365
- type: recall_at_1000
value: 89.629
- type: recall_at_3
value: 57.995
- type: recall_at_5
value: 62.843
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 85.95200000000001
- type: ap
value: 80.73847277002109
- type: f1
value: 85.92406135678594
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 20.916999999999998
- type: map_at_10
value: 33.23
- type: map_at_100
value: 34.427
- type: map_at_1000
value: 34.477000000000004
- type: map_at_3
value: 29.292
- type: map_at_5
value: 31.6
- type: mrr_at_1
value: 21.547
- type: mrr_at_10
value: 33.839999999999996
- type: mrr_at_100
value: 34.979
- type: mrr_at_1000
value: 35.022999999999996
- type: mrr_at_3
value: 29.988
- type: mrr_at_5
value: 32.259
- type: ndcg_at_1
value: 21.519
- type: ndcg_at_10
value: 40.209
- type: ndcg_at_100
value: 45.954
- type: ndcg_at_1000
value: 47.187
- type: ndcg_at_3
value: 32.227
- type: ndcg_at_5
value: 36.347
- type: precision_at_1
value: 21.519
- type: precision_at_10
value: 6.447
- type: precision_at_100
value: 0.932
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 13.877999999999998
- type: precision_at_5
value: 10.404
- type: recall_at_1
value: 20.916999999999998
- type: recall_at_10
value: 61.7
- type: recall_at_100
value: 88.202
- type: recall_at_1000
value: 97.588
- type: recall_at_3
value: 40.044999999999995
- type: recall_at_5
value: 49.964999999999996
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.02781577747379
- type: f1
value: 92.83653922768306
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 72.04286365709075
- type: f1
value: 53.43867658525793
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.47276395427035
- type: f1
value: 69.77017399597342
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.3819771351715
- type: f1
value: 76.8484533435409
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.16515993299593
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 31.77145323314774
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.53637706586391
- type: mrr
value: 33.7312926288863
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.063999999999999
- type: map_at_10
value: 15.046999999999999
- type: map_at_100
value: 19.116
- type: map_at_1000
value: 20.702
- type: map_at_3
value: 10.932
- type: map_at_5
value: 12.751999999999999
- type: mrr_at_1
value: 50.464
- type: mrr_at_10
value: 58.189
- type: mrr_at_100
value: 58.733999999999995
- type: mrr_at_1000
value: 58.769000000000005
- type: mrr_at_3
value: 56.24400000000001
- type: mrr_at_5
value: 57.68299999999999
- type: ndcg_at_1
value: 48.142
- type: ndcg_at_10
value: 37.897
- type: ndcg_at_100
value: 35.264
- type: ndcg_at_1000
value: 44.033
- type: ndcg_at_3
value: 42.967
- type: ndcg_at_5
value: 40.815
- type: precision_at_1
value: 50.15500000000001
- type: precision_at_10
value: 28.235
- type: precision_at_100
value: 8.994
- type: precision_at_1000
value: 2.218
- type: precision_at_3
value: 40.041
- type: precision_at_5
value: 35.046
- type: recall_at_1
value: 7.063999999999999
- type: recall_at_10
value: 18.598
- type: recall_at_100
value: 35.577999999999996
- type: recall_at_1000
value: 67.43
- type: recall_at_3
value: 11.562999999999999
- type: recall_at_5
value: 14.771
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.046
- type: map_at_10
value: 44.808
- type: map_at_100
value: 45.898
- type: map_at_1000
value: 45.927
- type: map_at_3
value: 40.19
- type: map_at_5
value: 42.897
- type: mrr_at_1
value: 32.706
- type: mrr_at_10
value: 47.275
- type: mrr_at_100
value: 48.075
- type: mrr_at_1000
value: 48.095
- type: mrr_at_3
value: 43.463
- type: mrr_at_5
value: 45.741
- type: ndcg_at_1
value: 32.706
- type: ndcg_at_10
value: 52.835
- type: ndcg_at_100
value: 57.345
- type: ndcg_at_1000
value: 57.985
- type: ndcg_at_3
value: 44.171
- type: ndcg_at_5
value: 48.661
- type: precision_at_1
value: 32.706
- type: precision_at_10
value: 8.895999999999999
- type: precision_at_100
value: 1.143
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 20.238999999999997
- type: precision_at_5
value: 14.728
- type: recall_at_1
value: 29.046
- type: recall_at_10
value: 74.831
- type: recall_at_100
value: 94.192
- type: recall_at_1000
value: 98.897
- type: recall_at_3
value: 52.37500000000001
- type: recall_at_5
value: 62.732
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.38799999999999
- type: map_at_10
value: 84.315
- type: map_at_100
value: 84.955
- type: map_at_1000
value: 84.971
- type: map_at_3
value: 81.33399999999999
- type: map_at_5
value: 83.21300000000001
- type: mrr_at_1
value: 81.03
- type: mrr_at_10
value: 87.395
- type: mrr_at_100
value: 87.488
- type: mrr_at_1000
value: 87.48899999999999
- type: mrr_at_3
value: 86.41499999999999
- type: mrr_at_5
value: 87.074
- type: ndcg_at_1
value: 81.04
- type: ndcg_at_10
value: 88.151
- type: ndcg_at_100
value: 89.38199999999999
- type: ndcg_at_1000
value: 89.479
- type: ndcg_at_3
value: 85.24000000000001
- type: ndcg_at_5
value: 86.856
- type: precision_at_1
value: 81.04
- type: precision_at_10
value: 13.372
- type: precision_at_100
value: 1.526
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.217
- type: precision_at_5
value: 24.502
- type: recall_at_1
value: 70.38799999999999
- type: recall_at_10
value: 95.452
- type: recall_at_100
value: 99.59700000000001
- type: recall_at_1000
value: 99.988
- type: recall_at_3
value: 87.11
- type: recall_at_5
value: 91.662
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 59.334991029213235
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 62.586500854616666
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.153
- type: map_at_10
value: 14.277000000000001
- type: map_at_100
value: 16.922
- type: map_at_1000
value: 17.302999999999997
- type: map_at_3
value: 9.961
- type: map_at_5
value: 12.257
- type: mrr_at_1
value: 25.4
- type: mrr_at_10
value: 37.458000000000006
- type: mrr_at_100
value: 38.681
- type: mrr_at_1000
value: 38.722
- type: mrr_at_3
value: 34.1
- type: mrr_at_5
value: 36.17
- type: ndcg_at_1
value: 25.4
- type: ndcg_at_10
value: 23.132
- type: ndcg_at_100
value: 32.908
- type: ndcg_at_1000
value: 38.754
- type: ndcg_at_3
value: 21.82
- type: ndcg_at_5
value: 19.353
- type: precision_at_1
value: 25.4
- type: precision_at_10
value: 12.1
- type: precision_at_100
value: 2.628
- type: precision_at_1000
value: 0.402
- type: precision_at_3
value: 20.732999999999997
- type: precision_at_5
value: 17.34
- type: recall_at_1
value: 5.153
- type: recall_at_10
value: 24.54
- type: recall_at_100
value: 53.293
- type: recall_at_1000
value: 81.57
- type: recall_at_3
value: 12.613
- type: recall_at_5
value: 17.577
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.86284404925333
- type: cos_sim_spearman
value: 78.85870555294795
- type: euclidean_pearson
value: 82.20105295276093
- type: euclidean_spearman
value: 78.92125617009592
- type: manhattan_pearson
value: 82.15840025289069
- type: manhattan_spearman
value: 78.85955732900803
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.98747423389027
- type: cos_sim_spearman
value: 75.71298531799367
- type: euclidean_pearson
value: 81.59709559192291
- type: euclidean_spearman
value: 75.40622749225653
- type: manhattan_pearson
value: 81.55553547608804
- type: manhattan_spearman
value: 75.39380235424899
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 83.76861330695503
- type: cos_sim_spearman
value: 85.72991921531624
- type: euclidean_pearson
value: 84.84504307397536
- type: euclidean_spearman
value: 86.02679162824732
- type: manhattan_pearson
value: 84.79969439220142
- type: manhattan_spearman
value: 85.99238837291625
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.31929747511796
- type: cos_sim_spearman
value: 81.50806522502528
- type: euclidean_pearson
value: 82.93936686512777
- type: euclidean_spearman
value: 81.54403447993224
- type: manhattan_pearson
value: 82.89696981900828
- type: manhattan_spearman
value: 81.52817825470865
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.14413295332908
- type: cos_sim_spearman
value: 88.81032027008195
- type: euclidean_pearson
value: 88.19205563407645
- type: euclidean_spearman
value: 88.89738339479216
- type: manhattan_pearson
value: 88.11075942004189
- type: manhattan_spearman
value: 88.8297061675564
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.15980075557017
- type: cos_sim_spearman
value: 83.81896308594801
- type: euclidean_pearson
value: 83.11195254311338
- type: euclidean_spearman
value: 84.10479481755407
- type: manhattan_pearson
value: 83.13915225100556
- type: manhattan_spearman
value: 84.09895591027859
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.93669480147919
- type: cos_sim_spearman
value: 87.89861394614361
- type: euclidean_pearson
value: 88.37316413202339
- type: euclidean_spearman
value: 88.18033817842569
- type: manhattan_pearson
value: 88.39427578879469
- type: manhattan_spearman
value: 88.09185009236847
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 66.62215083348255
- type: cos_sim_spearman
value: 67.33243665716736
- type: euclidean_pearson
value: 67.60871701996284
- type: euclidean_spearman
value: 66.75929225238659
- type: manhattan_pearson
value: 67.63907838970992
- type: manhattan_spearman
value: 66.79313656754846
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.65549191934764
- type: cos_sim_spearman
value: 85.73266847750143
- type: euclidean_pearson
value: 85.75609932254318
- type: euclidean_spearman
value: 85.9452287759371
- type: manhattan_pearson
value: 85.69717413063573
- type: manhattan_spearman
value: 85.86546318377046
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.08164129085783
- type: mrr
value: 96.2877273416489
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 62.09400000000001
- type: map_at_10
value: 71.712
- type: map_at_100
value: 72.128
- type: map_at_1000
value: 72.14399999999999
- type: map_at_3
value: 68.93
- type: map_at_5
value: 70.694
- type: mrr_at_1
value: 65.0
- type: mrr_at_10
value: 72.572
- type: mrr_at_100
value: 72.842
- type: mrr_at_1000
value: 72.856
- type: mrr_at_3
value: 70.44399999999999
- type: mrr_at_5
value: 71.744
- type: ndcg_at_1
value: 65.0
- type: ndcg_at_10
value: 76.178
- type: ndcg_at_100
value: 77.887
- type: ndcg_at_1000
value: 78.227
- type: ndcg_at_3
value: 71.367
- type: ndcg_at_5
value: 73.938
- type: precision_at_1
value: 65.0
- type: precision_at_10
value: 10.033
- type: precision_at_100
value: 1.097
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 27.667
- type: precision_at_5
value: 18.4
- type: recall_at_1
value: 62.09400000000001
- type: recall_at_10
value: 89.022
- type: recall_at_100
value: 96.833
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 75.922
- type: recall_at_5
value: 82.428
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.82178217821782
- type: cos_sim_ap
value: 95.71282508220798
- type: cos_sim_f1
value: 90.73120494335737
- type: cos_sim_precision
value: 93.52441613588111
- type: cos_sim_recall
value: 88.1
- type: dot_accuracy
value: 99.73960396039604
- type: dot_ap
value: 92.98534606529098
- type: dot_f1
value: 86.83024536805209
- type: dot_precision
value: 86.96088264794383
- type: dot_recall
value: 86.7
- type: euclidean_accuracy
value: 99.82475247524752
- type: euclidean_ap
value: 95.72927039014849
- type: euclidean_f1
value: 90.89974293059126
- type: euclidean_precision
value: 93.54497354497354
- type: euclidean_recall
value: 88.4
- type: manhattan_accuracy
value: 99.82574257425742
- type: manhattan_ap
value: 95.72142177390405
- type: manhattan_f1
value: 91.00152516522625
- type: manhattan_precision
value: 92.55429162357808
- type: manhattan_recall
value: 89.5
- type: max_accuracy
value: 99.82574257425742
- type: max_ap
value: 95.72927039014849
- type: max_f1
value: 91.00152516522625
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.63957663468679
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.003307257923964
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 53.005825525863905
- type: mrr
value: 53.854683919022165
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.503611569974098
- type: cos_sim_spearman
value: 31.17155564248449
- type: dot_pearson
value: 26.740428413981306
- type: dot_spearman
value: 26.55727635469746
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.23600000000000002
- type: map_at_10
value: 1.7670000000000001
- type: map_at_100
value: 10.208
- type: map_at_1000
value: 25.997999999999998
- type: map_at_3
value: 0.605
- type: map_at_5
value: 0.9560000000000001
- type: mrr_at_1
value: 84.0
- type: mrr_at_10
value: 90.167
- type: mrr_at_100
value: 90.167
- type: mrr_at_1000
value: 90.167
- type: mrr_at_3
value: 89.667
- type: mrr_at_5
value: 90.167
- type: ndcg_at_1
value: 77.0
- type: ndcg_at_10
value: 68.783
- type: ndcg_at_100
value: 54.196
- type: ndcg_at_1000
value: 52.077
- type: ndcg_at_3
value: 71.642
- type: ndcg_at_5
value: 70.45700000000001
- type: precision_at_1
value: 84.0
- type: precision_at_10
value: 73.0
- type: precision_at_100
value: 55.48
- type: precision_at_1000
value: 23.102
- type: precision_at_3
value: 76.0
- type: precision_at_5
value: 74.8
- type: recall_at_1
value: 0.23600000000000002
- type: recall_at_10
value: 1.9869999999999999
- type: recall_at_100
value: 13.749
- type: recall_at_1000
value: 50.157
- type: recall_at_3
value: 0.633
- type: recall_at_5
value: 1.0290000000000001
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.437
- type: map_at_10
value: 8.791
- type: map_at_100
value: 15.001999999999999
- type: map_at_1000
value: 16.549
- type: map_at_3
value: 3.8080000000000003
- type: map_at_5
value: 5.632000000000001
- type: mrr_at_1
value: 20.408
- type: mrr_at_10
value: 36.96
- type: mrr_at_100
value: 37.912
- type: mrr_at_1000
value: 37.912
- type: mrr_at_3
value: 29.592000000000002
- type: mrr_at_5
value: 34.489999999999995
- type: ndcg_at_1
value: 19.387999999999998
- type: ndcg_at_10
value: 22.554
- type: ndcg_at_100
value: 35.197
- type: ndcg_at_1000
value: 46.58
- type: ndcg_at_3
value: 20.285
- type: ndcg_at_5
value: 21.924
- type: precision_at_1
value: 20.408
- type: precision_at_10
value: 21.837
- type: precision_at_100
value: 7.754999999999999
- type: precision_at_1000
value: 1.537
- type: precision_at_3
value: 21.769
- type: precision_at_5
value: 23.673
- type: recall_at_1
value: 1.437
- type: recall_at_10
value: 16.314999999999998
- type: recall_at_100
value: 47.635
- type: recall_at_1000
value: 82.963
- type: recall_at_3
value: 4.955
- type: recall_at_5
value: 8.805
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.6128
- type: ap
value: 14.279639861175664
- type: f1
value: 54.922292491204274
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 57.01188455008489
- type: f1
value: 57.377953019225515
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 52.306769136544254
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.64701674912082
- type: cos_sim_ap
value: 72.46600945328552
- type: cos_sim_f1
value: 67.96572367648784
- type: cos_sim_precision
value: 61.21801649397336
- type: cos_sim_recall
value: 76.38522427440633
- type: dot_accuracy
value: 82.33295583238957
- type: dot_ap
value: 62.54843443071716
- type: dot_f1
value: 60.38378562507096
- type: dot_precision
value: 52.99980067769583
- type: dot_recall
value: 70.15831134564644
- type: euclidean_accuracy
value: 85.7423854085951
- type: euclidean_ap
value: 72.76873850945174
- type: euclidean_f1
value: 68.23556960543262
- type: euclidean_precision
value: 61.3344559040202
- type: euclidean_recall
value: 76.88654353562005
- type: manhattan_accuracy
value: 85.74834594981225
- type: manhattan_ap
value: 72.66825372446462
- type: manhattan_f1
value: 68.21539194662853
- type: manhattan_precision
value: 62.185056472632496
- type: manhattan_recall
value: 75.54089709762533
- type: max_accuracy
value: 85.74834594981225
- type: max_ap
value: 72.76873850945174
- type: max_f1
value: 68.23556960543262
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.73171110334924
- type: cos_sim_ap
value: 85.51855542063649
- type: cos_sim_f1
value: 77.95706775700934
- type: cos_sim_precision
value: 74.12524298805887
- type: cos_sim_recall
value: 82.20665229442562
- type: dot_accuracy
value: 86.94842240074514
- type: dot_ap
value: 80.90995345771762
- type: dot_f1
value: 74.20765027322403
- type: dot_precision
value: 70.42594385285575
- type: dot_recall
value: 78.41854019094548
- type: euclidean_accuracy
value: 88.73753250281368
- type: euclidean_ap
value: 85.54712254033734
- type: euclidean_f1
value: 78.07565728654365
- type: euclidean_precision
value: 75.1120597652081
- type: euclidean_recall
value: 81.282722513089
- type: manhattan_accuracy
value: 88.72588970388482
- type: manhattan_ap
value: 85.52118291594071
- type: manhattan_f1
value: 78.04428724070593
- type: manhattan_precision
value: 74.83219105490002
- type: manhattan_recall
value: 81.54450261780106
- type: max_accuracy
value: 88.73753250281368
- type: max_ap
value: 85.54712254033734
- type: max_f1
value: 78.07565728654365
language:
- en
license: mit
---
# # Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of [thenlper/gte-base](https://huggingface.co./thenlper/gte-base)
```bash
pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
```
```python
# from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-gte-base"
model_name_orig="thenlper/gte-base"
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
model = EncoderCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16"
)
outputs = model.generate(
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
max_length=64,
) # perform downstream tasks on outputs
outputs["pooler_output"]
outputs["last_hidden_state"]
outputs["attention_mask"]
# alternative, use SentenceTransformer Mix-In
# for end-to-end Sentence embeddings generation
# (not pulling from this CT2fast-HF repo)
from hf_hub_ctranslate2 import CT2SentenceTransformer
model = CT2SentenceTransformer(
model_name_orig, compute_type="int8_float16", device="cuda"
)
embeddings = model.encode(
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
)
print(embeddings.shape, embeddings)
scores = (embeddings @ embeddings.T) * 100
# Hint: you can also host this code via REST API and
# via github.com/michaelfeil/infinity
```
Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2)
and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
- `compute_type=int8_float16` for `device="cuda"`
- `compute_type=int8` for `device="cpu"`
Converted on 2023-10-13 using
```
LLama-2 -> removed <pad> token.
```
# Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
# Original description
# gte-base
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co./thenlper/gte-large), [GTE-base](https://huggingface.co./thenlper/gte-base), and [GTE-small](https://huggingface.co./thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
## Metrics
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co./spaces/mteb/leaderboard).
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**gte-large**](https://huggingface.co./thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
| [**gte-base**](https://huggingface.co./thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co./intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
| [e5-base-v2](https://huggingface.co./intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
| [**gte-small**](https://huggingface.co./thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co./intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co./sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co./bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
| [all-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
| [all-MiniLM-L6-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
| [contriever-base-msmarco](https://huggingface.co./nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
| [sentence-t5-base](https://huggingface.co./sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
## Usage
Code example
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-base")
model = AutoModel.from_pretrained("thenlper/gte-base")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a very happy person']
model = SentenceTransformer('thenlper/gte-base')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
### Limitation
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
### Citation
If you find our paper or models helpful, please consider citing them as follows:
```
@misc{li2023general,
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
year={2023},
eprint={2308.03281},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```