File size: 2,696 Bytes
9fe1804
fb332d6
 
 
 
 
 
 
 
9fe1804
fb332d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-13b-hf
model-index:
- name: lora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# lora-out

This model is a fine-tuned version of [codellama/CodeLlama-13b-hf](https://huggingface.co./codellama/CodeLlama-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4263

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7628        | 0.01  | 1    | 0.7296          |
| 0.7101        | 0.05  | 7    | 0.6906          |
| 0.5395        | 0.1   | 14   | 0.5214          |
| 0.5303        | 0.15  | 21   | 0.4871          |
| 0.4821        | 0.2   | 28   | 0.4676          |
| 0.5643        | 0.25  | 35   | 0.4563          |
| 0.5307        | 0.3   | 42   | 0.4484          |
| 0.5103        | 0.35  | 49   | 0.4445          |
| 0.5515        | 0.4   | 56   | 0.4415          |
| 0.4983        | 0.45  | 63   | 0.4386          |
| 0.4919        | 0.5   | 70   | 0.4351          |
| 0.4674        | 0.55  | 77   | 0.4316          |
| 0.5193        | 0.6   | 84   | 0.4295          |
| 0.4461        | 0.65  | 91   | 0.4295          |
| 0.4541        | 0.71  | 98   | 0.4280          |
| 0.486         | 0.76  | 105  | 0.4280          |
| 0.4875        | 0.81  | 112  | 0.4269          |
| 0.5553        | 0.86  | 119  | 0.4266          |
| 0.4605        | 0.91  | 126  | 0.4260          |
| 0.4767        | 0.96  | 133  | 0.4263          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
## Training procedure


### Framework versions


- PEFT 0.6.0