tags: | |
- sentence-transformers | |
- feature-extraction | |
- sentence-similarity | |
language: en | |
license: apache-2.0 | |
datasets: | |
- s2orc | |
- flax-sentence-embeddings/stackexchange_xml | |
- ms_marco | |
- gooaq | |
- yahoo_answers_topics | |
- code_search_net | |
- search_qa | |
- eli5 | |
- snli | |
- multi_nli | |
- wikihow | |
- natural_questions | |
- trivia_qa | |
- embedding-data/sentence-compression | |
- embedding-data/flickr30k-captions | |
- embedding-data/altlex | |
- embedding-data/simple-wiki | |
- embedding-data/QQP | |
- embedding-data/SPECTER | |
- embedding-data/PAQ_pairs | |
- embedding-data/WikiAnswers | |
# ONNX version of sentence-transormers/all-MiniLM-L6-v2 | |
This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. The ONNX version of this model is made for the [Metarank](https://github.com/metarank/metarank) re-ranker | |
to do semantic similarity. | |
Check out the [main Metarank docs](https://docs.metarank.ai) on how to configure it. | |
TLDR: | |
```yaml | |
- type: field_match | |
name: title_query_match | |
rankingField: ranking.query | |
itemField: item.title | |
distance: cos | |
method: | |
type: bert | |
model: metarank/all-MiniLM-L6-v2 | |
``` | |
## Building the model | |
```shell | |
$> pip install -r requirements.txt | |
$> python convert.py | |
============= Diagnostic Run torch.onnx.export version 2.0.0+cu117 ============= | |
verbose: False, log level: Level.ERROR | |
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ======================== | |
``` | |
## License | |
Apache 2.0 |