Synatra-10.7B-v0.4 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
7339815 verified
|
raw
history blame
4.76 kB
---
license: cc-by-sa-4.0
model-index:
- name: Synatra-10.7B-v0.4
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.93
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-10.7B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.47
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-10.7B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.5
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-10.7B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 51.11
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-10.7B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.85
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-10.7B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.04
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-10.7B-v0.4
name: Open LLM Leaderboard
---
# **Synatra-10.7B-v0.4🐧**
![Synatra-10.7B-v0.4](./Synatra.png)
# Join our discord
[Server Link](https://discord.gg/MrBt3PXdXc)
# **License**
The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included **cc-by-sa-4.0** license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences.
# **Model Details**
**Base Model**
[upstage/SOLAR-10.7B-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-v1.0)
**Trained On**
A100 80GB * 1
**Instruction format**
It follows **Alpaca** format.
# **Model Benchmark**
## Ko-LLM-Leaderboard
On Benchmarking...
# **Implementation Code**
Since, chat_template already contains insturction format above.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-10.7B-v0.4")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-10.7B-v0.4")
messages = [
{"role": "user", "content": "λ°”λ‚˜λ‚˜λŠ” μ›λž˜ ν•˜μ–€μƒ‰μ΄μ•Ό?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_maywell__Synatra-10.7B-v0.4)
| Metric |Value|
|---------------------------------|----:|
|Avg. |65.48|
|AI2 Reasoning Challenge (25-Shot)|64.93|
|HellaSwag (10-Shot) |82.47|
|MMLU (5-Shot) |62.50|
|TruthfulQA (0-shot) |51.11|
|Winogrande (5-shot) |81.85|
|GSM8k (5-shot) |50.04|