metadata
license: cc-by-sa-4.0
Synatra-10.7B-v0.4π§
License
This model is strictly non-commercial (cc-by-sa-4.0) use. The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-sa-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences.
Model Details
Base Model
mistralai/Mistral-7B-Instruct-v0.1
Trained On
A100 80GB * 1
Instruction format
It follows Alpaca format.
Model Benchmark
Ko-LLM-Leaderboard
On Benchmarking...
Implementation Code
Since, chat_template already contains insturction format above. You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-10.7B-v0.4")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-10.7B-v0.4")
messages = [
{"role": "user", "content": "λ°λλλ μλ νμμμ΄μΌ?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])