|
--- |
|
license: cc-by-sa-4.0 |
|
--- |
|
|
|
# **Synatra-10.7B-v0.4π§** |
|
![Synatra-10.7B-v0.4](./Synatra.png) |
|
|
|
# **License** |
|
|
|
This model is strictly [*non-commercial*](https://creativecommons.org/licenses/by-sa/4.0/) (**cc-by-sa-4.0**) use. |
|
The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included **cc-by-sa-4.0** license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. |
|
# **Model Details** |
|
|
|
**Base Model** |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
**Trained On** |
|
A100 80GB * 1 |
|
|
|
**Instruction format** |
|
|
|
It follows **Alpaca** format. |
|
|
|
# **Model Benchmark** |
|
|
|
|
|
## Ko-LLM-Leaderboard |
|
|
|
On Benchmarking... |
|
|
|
# **Implementation Code** |
|
|
|
Since, chat_template already contains insturction format above. |
|
You can use the code below. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-10.7B-v0.4") |
|
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-10.7B-v0.4") |
|
|
|
messages = [ |
|
{"role": "user", "content": "λ°λλλ μλ νμμμ΄μΌ?"}, |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |