|
--- |
|
license: apache-2.0 |
|
--- |
|
# maywell/EXAONE-3.0-7.8B-Instruct-Llamafied |
|
|
|
LG에서 동일 라이센스 재배포조차 막아버린 관계로 모델을 공유할 수 없게 되었습니다. vLLM, 추론 및 기타 활용으로 Llamafied 모델이 필요하다면 아래 스크립트를 실행해서 사용해주시면 감사하겠습니다. |
|
|
|
아래 modeling_exaone과 configuration_exaone의 경우에는 원본 repository를 참조해주세요. |
|
|
|
```python |
|
import torch |
|
import gc |
|
|
|
from transformers import LlamaConfig, LlamaForCausalLM, AutoModelForCausalLM, AutoTokenizer |
|
from tqdm import tqdm |
|
|
|
|
|
def unload_model(model): |
|
"""Clear memory by deleting a model and calling the garbage collector.""" |
|
del model |
|
gc.collect() |
|
# if torch.cuda.is_available(): |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
def create_llama_config(exaone_config): |
|
"""Create and return a Llama configuration based on EXAONE config.""" |
|
return LlamaConfig( |
|
vocab_size=exaone_config.vocab_size, |
|
hidden_size=exaone_config.hidden_size, |
|
intermediate_size=exaone_config.intermediate_size, |
|
num_hidden_layers=exaone_config.num_layers, |
|
num_attention_heads=exaone_config.num_attention_heads, |
|
max_position_embeddings=exaone_config.max_position_embeddings, |
|
rms_norm_eps=exaone_config.layer_norm_epsilon, |
|
num_key_value_heads=exaone_config.num_key_value_heads, |
|
rope_theta=exaone_config.rope_theta, |
|
bos_token_id=exaone_config.bos_token_id, |
|
eos_token_id=exaone_config.eos_token_id, |
|
pad_token_id=exaone_config.pad_token_id, |
|
attention_bias=False, |
|
) |
|
|
|
def copy_embedding_weights(llama_model, exaone_model): |
|
"""Copy embedding weights from EXAONE to Llama model.""" |
|
llama_model.model.embed_tokens.weight.data = exaone_model.transformer.wte.weight.data.to(llama_model.device) |
|
|
|
def copy_layer_weights(llama_layer, exaone_layer, device): |
|
"""Copy weights for a single layer from EXAONE to Llama model.""" |
|
# Self-attention |
|
llama_layer.self_attn.q_proj.weight.data = exaone_layer.attn.attention.q_proj.weight.data.to(device) |
|
llama_layer.self_attn.k_proj.weight.data = exaone_layer.attn.attention.k_proj.weight.data.to(device) |
|
llama_layer.self_attn.v_proj.weight.data = exaone_layer.attn.attention.v_proj.weight.data.to(device) |
|
llama_layer.self_attn.o_proj.weight.data = exaone_layer.attn.attention.out_proj.weight.data.to(device) |
|
# MLP |
|
llama_layer.mlp.gate_proj.weight.data = exaone_layer.mlp.c_fc_0.weight.data.to(device) |
|
llama_layer.mlp.up_proj.weight.data = exaone_layer.mlp.c_fc_1.weight.data.to(device) |
|
llama_layer.mlp.down_proj.weight.data = exaone_layer.mlp.c_proj.weight.data.to(device) |
|
# Layer Norms |
|
llama_layer.input_layernorm.weight.data = exaone_layer.ln_1.weight.data.to(device) |
|
llama_layer.post_attention_layernorm.weight.data = exaone_layer.ln_2.weight.data.to(device) |
|
|
|
def copy_final_weights(llama_model, exaone_model): |
|
"""Copy final layer norm and LM head weights from EXAONE to Llama model.""" |
|
llama_model.model.norm.weight.data = exaone_model.transformer.ln_f.weight.data.to(llama_model.device) |
|
llama_model.lm_head.weight.data = exaone_model.lm_head.weight.data.to(llama_model.device) |
|
|
|
def port_exaone_to_llama(exaone_model_path, llama_model_path): |
|
print("Loading EXAONE model and tokenizer...") |
|
exaone_model = AutoModelForCausalLM.from_pretrained(exaone_model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) |
|
exaone_tokenizer = AutoTokenizer.from_pretrained(exaone_model_path, trust_remote_code=True) |
|
exaone_config = exaone_model.config |
|
|
|
print("Creating Llama configuration...") |
|
llama_config = create_llama_config(exaone_config) |
|
|
|
print("Initializing Llama model...") |
|
llama_model = LlamaForCausalLM(llama_config) |
|
llama_model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
|
|
print("Copying weights...") |
|
copy_embedding_weights(llama_model, exaone_model) |
|
|
|
for i in tqdm(range(exaone_config.num_layers), desc="Copying layers"): |
|
copy_layer_weights(llama_model.model.layers[i], exaone_model.transformer.h[i], llama_model.device) |
|
|
|
copy_final_weights(llama_model, exaone_model) |
|
|
|
print("Unloading EXAONE model to free memory...") |
|
unload_model(exaone_model) |
|
|
|
print(f"Saving ported Llama model and tokenizer to {llama_model_path}") |
|
llama_model.save_pretrained(llama_model_path, safe_serialization=True, max_shard_size="5GB") |
|
exaone_tokenizer.save_pretrained(llama_model_path) |
|
|
|
print("Unloading Llama model...") |
|
unload_model(llama_model) |
|
|
|
print(f"EXAONE model successfully ported to Llama format and saved at {llama_model_path}") |
|
|
|
if __name__ == "__main__": |
|
exaone_model_path = "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct" |
|
llama_model_path = "./exa_llamafied" |
|
port_exaone_to_llama(exaone_model_path, llama_model_path) |
|
``` |
|
|
|
모델을 공개해주신 `LG AI Research`분들께 감사의 말씀 드립니다. |
|
[Original Repository](https://huggingface.co./LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) |