|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- it |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
![image/png](https://huggingface.co./datasets/malteos/images/resolve/main/occiglot.medium.png) |
|
|
|
# Occiglot-7B-IT-EN |
|
|
|
> A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident). |
|
> |
|
|
|
**Occiglot-7B-IT-EN** is a generative language model with 7B parameters for Italian and English and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/).. |
|
It is based on [Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) and trained on 113B tokens of additional multilingual and code data with a block size of 8,192 tokens per sample. |
|
Note that the model is a general-purpose base model and was not instruction-fine-tuned nor optimized for chat or other applications. We make an instruction tuned variant available as [occiglot-7b-it-en-instruct](https://huggingface.co./occiglot/occiglot-7b-it-en-instruct) |
|
|
|
This is the first release of an ongoing open research project for multilingual language models. |
|
If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!** |
|
|
|
|
|
### Model details |
|
|
|
- **Continued-pretraining from:** [Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) |
|
- **Model type:** Causal decoder-only transformer language model |
|
- **Languages:** English, Italian, and code. |
|
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html) |
|
- **Compute resources:** [HessianAI's 42](https://hessian.ai/) |
|
- **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting |
|
- **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology) |
|
- **Contact:** [Discord](https://discord.gg/wUpvYs4XvM) |
|
|
|
### How to use |
|
|
|
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we |
|
set a seed for reproducibility: |
|
|
|
```python |
|
>>> from transformers import pipeline, set_seed |
|
>>> generator = pipeline('text-generation', model='occiglot/occiglot-7b-it-en') |
|
>>> set_seed(42) |
|
>>> generator("Salve, sono una modella linguistica,", max_length=40, num_return_sequences=1) |
|
[{'generated_text': 'Salve, sono una modella linguistica che può aiutarvi a tradurre testi tra l'italiano e l'inglese. Se mi inviate un testo in italiano'}] |
|
``` |
|
|
|
## Dataset |
|
|
|
The training data is the respective subset of the data used for [occiglot-7b-eu5](https://huggingface.co./occiglot/occiglot-7b-eu5), i.e. Italian plus English and Code. |
|
|
|
The data distribution by language (estimated) is as follows: |
|
- English: ~34% |
|
- Code: ~13% |
|
- Italian: ~52% |
|
|
|
The training data was prepared using [lm-datasets](https://github.com/malteos/lm-datasets). |
|
The exact data configuration is [here](https://huggingface.co./occiglot/occiglot-7b-eu5/blob/main/lm-datasets-config.yml). |
|
|
|
## Training settings |
|
|
|
- Continual pre-training on 128 x A100-80GB on [HessianAI's 42](https://hessian.ai/). |
|
- Framework: [Determined](https://www.determined.ai/) |
|
- Precision: bf16 |
|
- Optimizer: AdamW (lr: 0.00001, warmup_steps: 420) |
|
- Global batch size: 512 (with 8192 blocksize) split over 128 GPUs |
|
- Cosine Annealing with Warmup |
|
|
|
|
|
## Tokenizer |
|
|
|
Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1). |
|
|
|
## Evaluation |
|
|
|
Preliminary evaluation results can be found below. |
|
Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co./datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance. |
|
Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian. |
|
|
|
<details> |
|
<summary>Evaluation results</summary> |
|
|
|
### All 5 Languages |
|
|
|
| | avg | arc_challenge | belebele | hellaswag | mmlu | truthfulqa | |
|
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:| |
|
| Occiglot-7b-eu5 | 0.516895 | 0.508109 | 0.675556 | 0.718963 | 0.402064 | 0.279782 | |
|
| Occiglot-7b-eu5-instruct | 0.537799 | 0.53632 | 0.691111 | 0.731918 | 0.405198 | 0.32445 | |
|
| Occiglot-7b-it-en | 0.513221 | 0.500564 | 0.694444 | 0.668099 | 0.413528 | 0.289469 | |
|
| Occiglot-7b-it-en-instruct | 0.53721 | 0.523128 | 0.726667 | 0.683414 | 0.414918 | 0.337927 | |
|
| Cerbero-7b | 0.532385 | 0.513714 | 0.743111 | 0.654061 | 0.427566 | 0.323475 | |
|
| Mistral-7b-v0.1 | 0.547111 | 0.528937 | 0.768444 | 0.682516 | 0.448253 | 0.307403 | |
|
| Mistral-7b-instruct-v0.2 | 0.56713 | 0.547228 | 0.741111 | 0.69455 | 0.422501 | 0.430262 | |
|
|
|
|
|
### English |
|
|
|
| | avg | arc_challenge | belebele | hellaswag | mmlu | truthfulqa | |
|
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:| |
|
| Occiglot-7b-eu5 | 0.59657 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 | |
|
| Occiglot-7b-eu5-instruct | 0.617905 | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449 | |
|
| Occiglot-7b-it-en | 0.630127 | 0.580205 | 0.774444 | 0.804222 | 0.578977 | 0.412786 | |
|
| Occiglot-7b-it-en-instruct | 0.659383 | 0.609215 | 0.82 | 0.809301 | 0.578835 | 0.479562 | |
|
| Cerbero-7b | 0.66661 | 0.613481 | 0.827778 | 0.810396 | 0.600484 | 0.480911 | |
|
| Mistral-7b-v0.1 | 0.668385 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 | |
|
| Mistral-7b-instruct-v0.2 | 0.713657 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 | |
|
|
|
### Italian |
|
|
|
| | avg | arc_challenge_it | belebele_it | hellaswag_it | mmlu_it | truthfulqa_it | |
|
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:| |
|
| Occiglot-7b-eu5 | 0.421382 | 0.501283 | 0.652222 | 0.700533 | 0 | 0.252874 | |
|
| Occiglot-7b-eu5-instruct | 0.437214 | 0.516681 | 0.661111 | 0.71326 | 0 | 0.295019 | |
|
| Occiglot-7b-it-en | 0.432667 | 0.536356 | 0.684444 | 0.694768 | 0 | 0.247765 | |
|
| Occiglot-7b-it-en-instruct | 0.456261 | 0.545766 | 0.717778 | 0.713804 | 0 | 0.303959 | |
|
| Cerbero-7b | 0.434939 | 0.522669 | 0.717778 | 0.631567 | 0 | 0.302682 | |
|
| Mistral-7b-v0.1 | 0.426264 | 0.502139 | 0.734444 | 0.630371 | 0 | 0.264368 | |
|
| Mistral-7b-instruct-v0.2 | 0.442383 | 0.519247 | 0.703333 | 0.6394 | 0 | 0.349936 | |
|
|
|
|
|
</details> |
|
|
|
## Acknowledgements |
|
|
|
The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)). |
|
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html) |
|
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D). |
|
|
|
|
|
## License |
|
|
|
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html) |
|
|
|
## See also |
|
|
|
- https://huggingface.co./collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01 |
|
|