π» German Merges π©πͺ
Collection
A collection of german speaking models creating by merging existing models and a german enforcing dpo alignment.
β’
14 items
β’
Updated
β’
1
Some of the best german models with 7b parameters as lasered dpo-trained dare_ties merge, quantized using awq.
Since the original models based on mistral - three of them on the brilliant german LeoLM/leo-mistral-hessianai-7b - they are reunited in this merged model. Hence the name, no right wing or nationalistic ideas involved :-). To improve the result quality they are dpo-trained with a german translation of intel-orca-dpo using our german fork of LLaMA-Factory. After that this model got a laserRMT treatment with german datasets.
Wiedervereinigung-7b itself is a LazyMergekit merge of:
All the actual heavylifting has been done by the creators of these models.
models:
- model: LeoLM/leo-mistral-hessianai-7b
# No parameters necessary for base model
- model: DiscoResearch/DiscoLM_German_7b_v1
parameters:
density: 0.6
weight: 0.25
- model: DRXD1000/Phoenix
parameters:
density: 0.6
weight: 0.25
- model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
parameters:
density: 0.6
weight: 0.25
- model: malteos/hermeo-7b
parameters:
density: 0.6
weight: 0.25
merge_method: dare_ties
base_model: LeoLM/leo-mistral-hessianai-7b
parameters:
int8_mask: true
dtype: bfloat16
Using laser and dpo results seems to help.
{
"first_turn": 7.3,
"second_turn": 6.6,
"categories": {
"writing": 8.6,
"roleplay": 8.1,
"reasoning": 5.25,
"math": 3.7,
"coding": 4.35,
"extraction": 8.15,
"stem": 8.875,
"humanities": 8.875
},
"average": 6.97
}
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayflowergmbh/Wiedervereinigung-7b-dpo-laser"
messages = [{"role": "user", "content": "Was ist ein large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])