Paraphrase-Generation

​

Model description

​ T5 Model for generating paraphrases of english sentences. Trained on the Google PAWS dataset. ​

How to use

​## Requires sentencepiece: # !pip install sentencepiece PyTorch and TF models available ​

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")  
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws").to('cuda')
​
sentence = "This is something which i cannot understand at all"

text =  "paraphrase: " + sentence + " </s>"

encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")


outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    do_sample=True,
    top_k=120,
    top_p=0.95,
    early_stopping=True,
    num_return_sequences=5
)

for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
    print(line)
​

For more reference on training your own T5 model or using this model, do check out Paraphrase Generation.

Downloads last month
59
GGUF
Model size
223M params
Architecture
t5

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.