Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - MATH-Hard_train_data.json
  ds_type: json
  path: /workspace/input_data/MATH-Hard_train_data.json
  type:
    field_input: problem
    field_instruction: type
    field_output: solution
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: masatochi/tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/MATH-Hard_train_data.json
model_type: LlamaForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: lkotbimehdi
wandb_mode: online
wandb_project: lko
wandb_run: miner_id_24
wandb_runid: 489dae6d-1165-481a-ae95-7be2a9d2b69b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b

This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
1.0005 0.0026 1 1.0009
0.9353 0.0052 2 0.9893
0.9784 0.0077 3 0.9538
1.0801 0.0103 4 0.9169
0.8091 0.0129 5 0.9048
0.8245 0.0155 6 0.9021
0.8799 0.0181 7 0.8947
0.7926 0.0206 8 0.8848
0.9324 0.0232 9 0.8763
0.8441 0.0258 10 0.8689

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for masatochi/tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b

Adapter
(48)
this model