martimfasantos's picture
End of training
bcf6d12 verified
metadata
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
tags:
  - xcomet_xl_xxl
  - generated_from_trainer
model-index:
  - name: sft-xcomet_xl_xxl-chosen-10lp-shuff-full-tiny3
    results: []

sft-xcomet_xl_xxl-chosen-10lp-shuff-full-tiny3

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the Unbabel/TowerAligned-v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7148
  • Nll Loss: 0.7148
  • Logps/best: -71.0023
  • Rewards/chosen: 3.2352
  • Rewards/rejected: 2.8073
  • Rewards/accuracies: 0.6780
  • Rewards/margins: 0.4279
  • Logps/rejected: -69.3502
  • Logps/chosen: -71.0023
  • Logits/rejected: -1.7526
  • Logits/chosen: -1.8804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Nll Loss Logps/best Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.7347 0.2127 100 0.7451 0.7451 -73.9864 2.9368 2.5650 0.6820 0.3718 -71.7727 -73.9864 -1.7676 -1.8958
0.7192 0.4254 200 0.7245 0.7245 -71.9551 3.1399 2.7227 0.6760 0.4172 -70.1954 -71.9551 -1.7508 -1.8778
0.7184 0.6381 300 0.7170 0.7170 -71.2174 3.2137 2.7824 0.6800 0.4312 -69.5984 -71.2174 -1.7526 -1.8800
0.6793 0.8508 400 0.7148 0.7148 -71.0023 3.2352 2.8073 0.6780 0.4279 -69.3502 -71.0023 -1.7526 -1.8804

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.19.1