manu's picture
Upload folder using huggingface_hub
f5ec5a1 verified
metadata
license: mit
base_model: croissantllm/CroissantLLMBase
tags:
  - generated_from_trainer
model-index:
  - name: out_alpaca_classic
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: croissantllm/CroissantLLMBase                                                                                                                                                                   
model_type: LlamaForCausalLM                                                                                                                                                                                
tokenizer_type: LlamaTokenizerFast                                                                                                                                                                              
is_llama_derived_model: true                                                                                                                                                                                
                                                                                                                                                                                                            
load_in_8bit: false                                                                                                                                                                                         
load_in_4bit: false                                                                                                                                                                                         
strict: false                                                                                                                                                                                               
                                                                                                                                                                                                            
datasets:                                                                                                                                                                                                   
  - path: manu/mmlu_alpaca_classic
    split: train                                                                                                                                                               
    type: alpaca

dataset_prepared_path: last_run_prepared2                                                                                                                                                                   
val_set_size: 0.05                       
output_dir: ./out_alpaca_classic                                                                                                                                                                    
                                                                                                                                                                                                            
sequence_len: 2048                                                                                                                                                                                          
sample_packing: false                                                                                                                                                                                       
pad_to_sequence_len: false                                                                                                                                                                                   
                                                                                                                                                                                                            
adapter:                                                                                                                                                                                                    
lora_model_dir:                                                                                                                                                                                             
lora_r:                                                                                                                                                                                                     
lora_alpha:                                                                                                                                                                                                 
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 32
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_steps: 50
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:

out_alpaca_classic

This model is a fine-tuned version of croissantllm/CroissantLLMBase on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
8.7291 0.0 1 8.6869
0.7278 0.25 371 0.7531
0.7061 0.5 742 0.7016
0.7081 0.75 1113 0.6987

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0