metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-blank_img
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9448669201520913
swin-tiny-patch4-window7-224-blank_img
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1727
- Accuracy: 0.9449
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2646 | 1.0 | 74 | 0.1974 | 0.9392 |
0.2287 | 2.0 | 148 | 0.1979 | 0.9354 |
0.198 | 3.0 | 222 | 0.1727 | 0.9449 |
0.1889 | 4.0 | 296 | 0.1747 | 0.9430 |
0.223 | 5.0 | 370 | 0.1711 | 0.9449 |
0.1771 | 6.0 | 444 | 0.1697 | 0.9382 |
0.1864 | 7.0 | 518 | 0.1672 | 0.9392 |
0.1716 | 8.0 | 592 | 0.1801 | 0.9430 |
0.192 | 9.0 | 666 | 0.1754 | 0.9411 |
0.1886 | 10.0 | 740 | 0.1766 | 0.9420 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0