Transformers
Inference Endpoints
AImoney / README.md
mahdijnt's picture
update
b387864 verified
metadata
license: mit
datasets:
  - stanfordnlp/imdb
  - stanfordnlp/sst2
  - Iliab/emotion_dataset
  - fancyzhx/ag_news
  - CogComp/trec
  - microsoft/ms_marco
  - CoIR-Retrieval/CodeSearchNet-go-queries-corpus
  - CoIR-Retrieval/CodeSearchNet-ccr-javascript-queries-corpus
  - KomeijiForce/CommonsenseQA-Explained-by-ChatGPT
  - Skylion007/openwebtext
  - takala/financial_phrasebank
language:
  - fa
  - en
  - es
  - ru
  - de
metrics:
  - accuracy
  - precision
  - f1
  - recall
  - roc_auc
  - bleu
  - rouge
  - perplexity
  - mse
library_name: transformers

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

Model Description

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

from datasets import load_dataset, load_metric

بارگذاری مجموعه داده IMDB

dataset = load_dataset('imdb')

بارگذاری معیارهای ارزیابی

accuracy_metric = load_metric('accuracy') precision_metric = load_metric('precision') recall_metric = load_metric('recall') f1_metric = load_metric('f1')

نمونه‌ای از نحوه استفاده از معیارهای ارزیابی

predictions = [0, 1, 1, 0] # پیش‌بینی‌ها references = [0, 1, 0, 0] # مقادیر واقعی

accuracy = accuracy_metric.compute(predictions=predictions, references=references) precision = precision_metric.compute(predictions=predictions, references=references) recall = recall_metric.compute(predictions=predictions, references=references) f1 = f1_metric.compute(predictions=predictions, references=references)

print(f"Accuracy: {accuracy['accuracy']}") print(f"Precision: {precision['precision']}") print(f"Recall: {recall['recall']}") print(f"F1 Score: {f1['f1']}") from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline

بارگذاری مدل و tokenizer

model_name = "نام مدل آموزش‌دیده شما" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)

ایجاد pipeline برای تحلیل احساسات

sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

تحلیل احساسات یک متن

text = "I love using Hugging Face transformers!" result = sentiment_analysis(text) print(result) from transformers import AutoModelForCausalLM

بارگذاری مدل و tokenizer

model_name = "نام مدل آموزش‌دیده شما" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)

ایجاد pipeline برای تولید متن

text_generation = pipeline("text-generation", model=model, tokenizer=tokenizer)

تولید متن

prompt = "Once upon a time" generated_text = text_generation(prompt, max_length=50) print(generated_text) from transformers import AutoModelForSeq2SeqLM

بارگذاری مدل و tokenizer

model_name = "نام مدل آموزش‌دیده شما" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)

ایجاد pipeline برای ترجمه

translation = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer)

ترجمه یک متن

text = "How are you?" translated_text = translation(text) print(translated_text) from transformers import AutoModelForQuestionAnswering

بارگذاری مدل و tokenizer

model_name = "نام مدل آموزش‌دیده شما" model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)

ایجاد pipeline برای پاسخ به سوالات

question_answering = pipeline("question-answering", model=model, tokenizer=tokenizer)

پاسخ به یک سوال

context = "Hugging Face is creating a tool that democratizes AI." question = "What is Hugging Face creating?" answer = question_answering(question=question, context=context) print(answer) from flask import Flask, request, jsonify from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer

app = Flask(name)

بارگذاری مدل و tokenizer

model_name = "نام مدل آموزش‌دیده شما" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)

ایجاد pipeline برای تحلیل احساسات

sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

@app.route('/analyze', methods=['POST']) def analyze(): data = request.json text = data['text'] result = sentiment_analysis(text) return jsonify(result)

if name == 'main': app.run(debug=True)