license: apache-2.0
datasets:
- mosaicml/dolly_hhrlhf
language:
- en
library_name: transformers
pipeline_tag: text-generation
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
open-llama-0.3T-7B-instruct-dolly-hhrlhf - GGUF
- Model creator: VMware
- Original model: open-llama-0.3T-7B-instruct-dolly-hhrlhf
OpenLlama is a free reimplementation of the original Llama Model which is licensed under Apache 2 license.
About GGUF format
gguf
is the current file format used by the ggml
library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the llama.cpp project by Georgi Gerganov
Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are legacy
quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not real K-quants. More details can be found in affected model descriptions. (This mainly refers to Falcon 7b and Starcoder models)
K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load. So, if possible, use K-quants. With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
Original Model Card:
VMware/open-llama-0.3T-7B-instruct-dolly-hhrlhf
Fully Open Source, Commerically viable.
The instruction dataset, mosaicml/dolly_hhrlhf is under cc-by-sa-3.0, and the Language Model (openlm-research/open_llama_7b_preview_300bt) is under apache-2.0 License.
Use in Transformers
Please load the tokenizer with 'add_bos_token = True' parameter as the underlying OpenLLaMa model and this model were trained with a BOS token.
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'VMware/open-llama-0.3T-7B-instruct-dolly-hhrlhf'
tokenizer = AutoTokenizer.from_pretrained(model_name, add_bos_token = True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype= torch.float16, device_map = 'sequential')
prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
prompt= 'how do I bake a cake?'
inputt = prompt_template.format(instruction= prompt)
input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
output1 = model.generate(input_ids, max_length=512)
input_length = input_ids.shape[1]
output1 = output1[:, input_length:]
output= tokenizer.decode(output1[0])
print(output)
'''
Baking a cake is a simple process. You will need to prepare a cake mixture, then bake it in the oven. You can add various ingredients to the cake mixture, such as fruit, nuts, or spices, to make it flavorful. Baking a cake can be fun, as it creates a delicious dessert!</s>
'''
Drawbacks
- The model was trained on a partially trained Open-LLaMA checkpoint. (300B tokens).
Evaluation
TODO
End of original Model File
Please consider to support my work
Coming Soon: I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.