Edit model card

Piccolo-8x7b

In loving memory of my dog Klaus (Piccolo)

~ Piccolo (Italian): the little one ~

piccolo.png

Based on mlabonne/NeuralBeagle-7b Quants are available here

Code Example

Inference and Evaluation colab available here

from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.
    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

model_id = "macadeliccc/piccolo-8x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)

prompt = "What is the best way to train Cane Corsos?"

print("Response:")
print(generate_response(prompt), "\n")

The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.

Example output

example_output

Evaluations

image/png

https://huggingface.co./datasets/open-llm-leaderboard/details_macadeliccc__piccolo-8x7b

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.80
AI2 Reasoning Challenge (25-Shot) 69.62
HellaSwag (10-Shot) 86.98
MMLU (5-Shot) 64.13
TruthfulQA (0-shot) 64.17
Winogrande (5-shot) 79.87
GSM8k (5-shot) 72.02
Downloads last month
1,200
Safetensors
Model size
46.7B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using macadeliccc/piccolo-8x7b 12

Collection including macadeliccc/piccolo-8x7b

Evaluation results