Piccolo MoE
Collection
MoEs skilled in math and programming. This is experimentation of my daily driver.
β’
6 items
β’
Updated
In loving memory of my dog Klaus (Piccolo)
~ Piccolo (Italian): the little one ~
Based on mlabonne/NeuralBeagle-7b Quants are available here
Inference and Evaluation colab available here
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/piccolo-8x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)
prompt = "What is the best way to train Cane Corsos?"
print("Response:")
print(generate_response(prompt), "\n")
The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.
https://huggingface.co./datasets/open-llm-leaderboard/details_macadeliccc__piccolo-8x7b
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.80 |
AI2 Reasoning Challenge (25-Shot) | 69.62 |
HellaSwag (10-Shot) | 86.98 |
MMLU (5-Shot) | 64.13 |
TruthfulQA (0-shot) | 64.17 |
Winogrande (5-shot) | 79.87 |
GSM8k (5-shot) | 72.02 |