Music Genre Classification using Wav2Vec 2.0

How to use

Requirements

# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa

Prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor

import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-voxpopuli-gtzan-music"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
    return outputs
path = "genres_original/disco/disco.00067.wav"
outputs = predict(path, sampling_rate)
[
{'Label': 'blues', 'Score': '0.0%'},
{'Label': 'classical', 'Score': '0.0%'},
{'Label': 'country', 'Score': '0.0%'},
{'Label': 'disco', 'Score': '99.8%'},
{'Label': 'hiphop', 'Score': '0.0%'},
{'Label': 'jazz', 'Score': '0.0%'},
{'Label': 'metal', 'Score': '0.0%'},
{'Label': 'pop', 'Score': '0.0%'},
{'Label': 'reggae', 'Score': '0.0%'},
{'Label': 'rock', 'Score': '0.0%'}
]

Evaluation

The following tables summarize the scores obtained by model overall and per each class.

label precision recall f1-score support
blues 0.792 0.950 0.864 20
classical 0.864 0.950 0.905 20
country 0.812 0.650 0.722 20
disco 0.778 0.700 0.737 20
hiphop 0.933 0.700 0.800 20
jazz 1.000 0.850 0.919 20
metal 0.783 0.900 0.837 20
pop 0.917 0.550 0.687 20
reggae 0.543 0.950 0.691 20
rock 0.611 0.550 0.579 20
accuracy 0.775 0.775 0.775 0
macro avg 0.803 0.775 0.774 200
weighted avg 0.803 0.775 0.774 200

Questions?

Post a Github issue from HERE.

Downloads last month
144
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres

Finetunes
2 models