m-faraz-ali's picture
End of training
eb05fde verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Tb_Dataset
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.875

Tb_Dataset

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4037
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0996 0.3067 100 1.0429 0.5625
0.0481 0.6135 200 0.5665 0.8125
0.0391 0.9202 300 1.0037 0.6875
0.0711 1.2270 400 0.5200 0.875
0.0258 1.5337 500 0.3818 0.9375
0.0547 1.8405 600 0.3415 0.9375
0.0029 2.1472 700 0.0637 0.9375
0.0543 2.4540 800 0.7362 0.8125
0.0265 2.7607 900 1.0917 0.75
0.0017 3.0675 1000 0.0030 1.0
0.0054 3.3742 1100 0.0364 1.0
0.0234 3.6810 1200 0.2310 0.875
0.0076 3.9877 1300 0.4037 0.875

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1