MuPT: Symbolic Music Generative Pre-trained Transformer

MuPT is a series of pre-trained models for symbolic music generation. It was trained on a large-scale dataset of symbolic music, including millions of monophonic and polyphonic pieces from different genres and styles. The models are trained with the LLama2 architecture, and can be further used for downstream music generation tasks such as melody generation, accompaniment generation, and multi-track music generation.

  • 29/01/2024: intermediate checkpoints of MuPT-v0-8192-1.3B model are released.
  • 09/01/2024: a series of pre-trained MuPT models are released, with parameters ranging from 110M to 1.3B.

Intermediate Checkpoints

We uploaded all the intermediate checkpoints of MuPT-v0-8192-1.3B model, which can be used for further research, continue training, and downstream tasks, etc. Available intermediate checkpoints are up to 23000 steps, with checkpoints every 1000 steps.

Training parameters:

Name Parameters Batch Size Tokens/Step Max Learnging Rate Seq Length Hidden Size Layers Heads
MuPT-v0-8192-1.3B 1.3B 1024 8.4M 3e-5 8192 1536 48 24

Model architecture

The details of model architecture of MuPT-v0 are listed below:

Name Parameters Training Data(Music Pieces) Seq Length Hidden Size Layers Heads
MuPT-v0-8192-110M 110M 7M x 10 epochs 8192 768 12 12
MuPT-v0-8192-345M 345M 7M x 7.0 epochs 8192 1024 24 16
MuPT-v0-8192-770M 770M 7M x 5.3 epochs 8192 1280 36 20
MuPT-v0-8192-1.3B 1.3B 7M x 5.8 epochs 8192 1536 48 24

Weight Conversion

The checkpoint we released is in Megatron-LM format, you can use the checkpoint directly in Megatron-LM for continue training or fine-tuning. We also provide a script to convert the checkpoints to Huggingface format:

export PYTHONPATH=/path/to/megatron-lm
HF_SAVE_ROOT=/path/to/save/huggingface/checkpoint

ITER=023000

MEGATRON_PATH=/path/to/intermediate/checkpoint/iter_00${ITER}
HF_SAVE_PATH=${HF_SAVE_ROOT}/MuPT-v0-1.3B-8192-iter${ITER}

python convert_llama_megatron_hf.py \
    --input-dir ${MEGATRON_PATH} \
    --output-dir ${HF_SAVE_PATH} \
    --vocab-size 50000

Model Usage

There are several ways to use our pre-trained MuPT models, we now the usage based on Megatron-LM.

Before starting, make sure you have setup the relevant environment and codebase.

# pull Megatron-LM codebase
mkdir -p /path/to/workspace && cd /path/to/workspace
git clone https://github.com/NVIDIA/Megatron-LM.git

# download the pre-trained MuPT models checkpoint and vocab files from Huggingface page
mkdir -p /models/MuPT_v0_8192_1.3B && cd /models/MuPT_v0_8192_1.3B
wget -O model_optim_rng.pt https://huggingface.co./m-a-p/MuPT_v0_8192_1.3B/resolve/main/model_optim_rng.pt?download=true
wget -O newline.vocab https://huggingface.co./m-a-p/MuPT_v0_8192_1.3B/resolve/main/newline.vocab?download=true
wget -O newline.txt https://huggingface.co./m-a-p/MuPT_v0_8192_1.3B/resolve/main/newline.txt?download=true

We recommend using the latest version of NGC's PyTorch container for MuPT inference. See more details in Megatron-LM

# pull the latest NGC's PyTorch container, mount the workspace directory and enter the container
docker run --gpus all -it --name megatron --shm-size=16g -v $PWD:/workspace -p 5000:5000 nvcr.io/nvidia/pytorch:23.11-py3 /bin/bash

Once you enter the container, you can start a REST server for inference.

Click to expand the example script
#!/bin/bash
# This example will start serving the 1.3B model.
export CUDA_DEVICE_MAX_CONNECTIONS=1

DISTRIBUTED_ARGS="--nproc_per_node 1 \
                --nnodes 1 \
                --node_rank 0 \
                --master_addr localhost \
                --master_port 6000"

CHECKPOINT=/path/to/model/checkpoint/folder
VOCAB_FILE=/path/to/vocab/file
MERGE_FILE=/path/to/merge/file

MODEL_SIZE="1.3B"
if   [[ ${MODEL_SIZE} == "110M" ]];   then HIDDEN_SIZE=768;  NUM_HEAD=12; NUM_QUERY_GROUP=12; NUM_LAYERS=12; FFN_HIDDEN_SIZE=3072; NORM_EPS=1e-5;
elif [[ ${MODEL_SIZE} == "345M" ]];   then HIDDEN_SIZE=1024;  NUM_HEAD=16; NUM_QUERY_GROUP=16; NUM_LAYERS=24; FFN_HIDDEN_SIZE=4096; NORM_EPS=1e-5;
elif [[ ${MODEL_SIZE} == "770M" ]];   then HIDDEN_SIZE=1280;  NUM_HEAD=20; NUM_QUERY_GROUP=20; NUM_LAYERS=36; FFN_HIDDEN_SIZE=5120; NORM_EPS=1e-5;
elif [[ ${MODEL_SIZE} == "1.3B" ]];   then HIDDEN_SIZE=1536;  NUM_HEAD=24; NUM_QUERY_GROUP=24; NUM_LAYERS=48; FFN_HIDDEN_SIZE=6144; NORM_EPS=1e-5;
else echo "invalid MODEL_SIZE: ${MODEL_SIZE}"; exit 1
fi
MAX_SEQ_LEN=8192
MAX_POSITION_EMBEDDINGS=8192

pip install flask-restful

torchrun $DISTRIBUTED_ARGS tools/run_text_generation_server.py   \
    --tensor-model-parallel-size 1  \
    --pipeline-model-parallel-size 1  \
    --num-layers ${NUM_LAYERS}  \
    --hidden-size ${HIDDEN_SIZE}  \
    --ffn-hidden-size ${FFN_HIDDEN_SIZE} \
    --load ${CHECKPOINT}  \
    --group-query-attention \
    --num-query-groups ${NUM_QUERY_GROUP} \
    --position-embedding-type rope \
    --num-attention-heads ${NUM_HEAD}  \
    --max-position-embeddings ${MAX_POSITION_EMBEDDINGS}  \
    --tokenizer-type GPT2BPETokenizer  \
    --normalization RMSNorm \
    --norm-epsilon ${NORM_EPS} \
    --make-vocab-size-divisible-by 1 \
    --swiglu \
    --use-flash-attn \
    --bf16  \
    --micro-batch-size 1  \
    --disable-bias-linear \
    --no-bias-gelu-fusion \
    --untie-embeddings-and-output-weights \
    --seq-length ${MAX_SEQ_LEN}  \
    --vocab-file $VOCAB_FILE  \
    --merge-file $MERGE_FILE  \
    --attention-dropout 0.0 \
    --hidden-dropout 0.0 \
    --weight-decay 1e-1 \
    --clip-grad 1.0 \
    --adam-beta1 0.9 \
    --adam-beta2 0.95 \
    --adam-eps 1e-8 \
    --seed 42

Use CURL to query the server directly, note that the newline token \n is represented by <n> in the vocabulary, so we need to replace the newline token with <n> in both the prompt and the generated tokens.

curl 'http://localhost:6000/api' -X 'PUT' -H 'Content-Type: application/json; charset=UTF-8'  -d '{"prompts":["X:1<n>L:1/8<n>Q:1/8=200<n>M:4/4<n>K:Gmin<n>|:\"Gm\" BGdB"], "tokens_to_generate":4096}'

Processed Output:

X:1
L:1/8
Q:1/8=200
M:4/4<n>K:Gmin
|:\"Gm\" BGdB fdBG |\"F\" AFcF dFcF |\"Gm\" BGdG gFBF |\"F\" AFAG AF F2 |\"Gm\" BGBd fffd |\"F\" cdcB cdeg |
\"Gm\" fdcB\"Eb\" AFcA |1 BGFG\"F\" AFGc :|2 BGFG\"F\" AF F2 ||

Once you encode the generated tokens into audio, you will hear the following music.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including m-a-p/MuPT-intermediate-ckpts