Edit model card

SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-large-en-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What are some of the legal frameworks mentioned in the context that aim to protect personal information, and how do they relate to data privacy concerns?',
    "65. See, e.g., Scott Ikeda. Major Data Broker Exposes 235 Million Social Media Profiles in Data Lead: Info\nAppears to Have Been Scraped Without Permission. CPO Magazine. Aug. 28, 2020. https://\nwww.cpomagazine.com/cyber-security/major-data-broker-exposes-235-million-social-media-profiles-\nin-data-leak/; Lily Hay Newman. 1.2 Billion Records Found Exposed Online in a Single Server . WIRED,\nNov. 22, 2019. https://www.wired.com/story/billion-records-exposed-online/\n66.Lola Fadulu. Facial Recognition Technology in Public Housing Prompts Backlash . New York Times.\nSept. 24, 2019.\nhttps://www.nytimes.com/2019/09/24/us/politics/facial-recognition-technology-housing.html\n67. Jo Constantz. ‘They Were Spying On Us’: Amazon, Walmart, Use Surveillance Technology to Bust\nUnions. Newsweek. Dec. 13, 2021.\nhttps://www.newsweek.com/they-were-spying-us-amazon-walmart-use-surveillance-technology-bust-\nunions-1658603\n68. See, e.g., enforcement actions by the FTC against the photo storage app Everalbaum\n(https://www.ftc.gov/legal-library/browse/cases-proceedings/192-3172-everalbum-inc-matter), and\nagainst Weight Watchers and their subsidiary Kurbo(https://www.ftc.gov/legal-library/browse/cases-proceedings/1923228-weight-watchersww)\n69. See, e.g., HIPAA, Pub. L 104-191 (1996); Fair Debt Collection Practices Act (FDCPA), Pub. L. 95-109\n(1977); Family Educational Rights and Privacy Act (FERPA) (20 U.S.C. § 1232g), Children's Online\nPrivacy Protection Act of 1998, 15 U.S.C. 6501–6505, and Confidential Information Protection andStatistical Efficiency Act (CIPSEA) (116 Stat. 2899)\n70. Marshall Allen. You Snooze, You Lose: Insurers Make The Old Adage Literally True . ProPublica. Nov.\n21, 2018.\nhttps://www.propublica.org/article/you-snooze-you-lose-insurers-make-the-old-adage-literally-true\n71.Charles Duhigg. How Companies Learn Your Secrets. The New York Times. Feb. 16, 2012.\nhttps://www.nytimes.com/2012/02/19/magazine/shopping-habits.html72. Jack Gillum and Jeff Kao. Aggression Detectors: The Unproven, Invasive Surveillance Technology\nSchools are Using to Monitor Students. ProPublica. Jun. 25, 2019.\nhttps://features.propublica.org/aggression-detector/the-unproven-invasive-surveillance-technology-\nschools-are-using-to-monitor-students/\n73.Drew Harwell. Cheating-detection companies made millions during the pandemic. Now students are\nfighting back. Washington Post. Nov. 12, 2020.\nhttps://www.washingtonpost.com/technology/2020/11/12/test-monitoring-student-revolt/\n74. See, e.g., Heather Morrison. Virtual Testing Puts Disabled Students at a Disadvantage. Government\nTechnology. May 24, 2022.\nhttps://www.govtech.com/education/k-12/virtual-testing-puts-disabled-students-at-a-disadvantage;\nLydia X. Z. Brown, Ridhi Shetty, Matt Scherer, and Andrew Crawford. Ableism And Disability\nDiscrimination In New Surveillance Technologies: How new surveillance technologies in education,\npolicing, health care, and the workplace disproportionately harm disabled people . Center for Democracy\nand Technology Report. May 24, 2022.https://cdt.org/insights/ableism-and-disability-discrimination-in-new-surveillance-technologies-how-new-surveillance-technologies-in-education-policing-health-care-and-the-workplace-disproportionately-harm-disabled-people/\n69",
    '25 MP-2.3-002 Review and document accuracy, representativeness, relevance, suitability of data \nused at different stages of AI life cycle.  Harmful Bias and Homogenization ; \nIntellectual Property  \nMP-2.3-003 Deploy and document fact -checking techniques to verify the accuracy and \nveracity of information generated by GAI systems, especially when the \ninformation comes from multiple (or unknown) sources.  Information Integrity  \nMP-2.3-004 Develop and implement testing techniques to identify GAI produced content (e.g., synthetic media) that might be indistinguishable from human -generated content.  Information Integrity  \nMP-2.3-005 Implement plans for GAI systems to undergo regular adversarial testing to identify \nvulnerabilities and potential manipulation or misuse.  Information Security  \nAI Actor Tasks:  AI Development, Domain Experts, TEVV  \n \nMAP 3.4:  Processes for operator and practitioner proficiency with AI system performance and trustworthiness – and relevant \ntechnical standards and certifications – are defined, assessed, and documented.  \nAction ID  Suggested Action  GAI Risks  \nMP-3.4-001 Evaluate whether GAI operators and end -users can accurately understand \ncontent lineage and origin.  Human -AI Configuration ; \nInformation Integrity  \nMP-3.4-002 Adapt existing training programs to include modules on digital content \ntransparency.  Information Integrity  \nMP-3.4-003 Develop certification programs that test proficiency in managing GAI risks and \ninterpreting content provenance, relevant to specific industry and context.  Information Integrity  \nMP-3.4-004 Delineate human proficiency tests from tests of GAI capabilities.  Human -AI Configuration  \nMP-3.4-005 Implement systems to continually monitor and track the outcomes of human- GAI \nconfigurations for future refinement and improvements . Human -AI Configuration ; \nInformation Integrity  \nMP-3.4-006 Involve the end -users, practitioners, and operators in GAI system in prototyping \nand testing activities. Make sure these tests cover various scenarios , such as crisis \nsituations or ethically sensitive contexts.  Human -AI Configuration ; \nInformation Integrity ; Harmful Bias \nand Homogenization ; Dangerous , \nViolent, or Hateful Content  \nAI Actor Tasks: AI Design, AI Development, Domain Experts, End -Users, Human Factors, Operation and Monitoring',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7188
cosine_accuracy@3 0.9219
cosine_accuracy@5 0.9688
cosine_accuracy@10 1.0
cosine_precision@1 0.7188
cosine_precision@3 0.3073
cosine_precision@5 0.1937
cosine_precision@10 0.1
cosine_recall@1 0.7188
cosine_recall@3 0.9219
cosine_recall@5 0.9688
cosine_recall@10 1.0
cosine_ndcg@10 0.8728
cosine_mrr@10 0.8305
cosine_map@100 0.8305
dot_accuracy@1 0.7344
dot_accuracy@3 0.9219
dot_accuracy@5 0.9688
dot_accuracy@10 1.0
dot_precision@1 0.7344
dot_precision@3 0.3073
dot_precision@5 0.1937
dot_precision@10 0.1
dot_recall@1 0.7344
dot_recall@3 0.9219
dot_recall@5 0.9688
dot_recall@10 1.0
dot_ndcg@10 0.8785
dot_mrr@10 0.8383
dot_map@100 0.8383

Training Details

Training Dataset

Unnamed Dataset

  • Size: 586 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 586 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 20 tokens
    • mean: 35.95 tokens
    • max: 60 tokens
    • min: 8 tokens
    • mean: 545.8 tokens
    • max: 1018 tokens
  • Samples:
    sentence_0 sentence_1
    What are the primary objectives outlined in the "Blueprint for an AI Bill of Rights" as it pertains to the American people? BLUEPRINT FOR AN
    AI B ILL OF
    RIGHTS
    MAKING AUTOMATED
    SYSTEMS WORK FOR
    THE AMERICAN PEOPLE
    OCTOBER 2022
    In what ways does the document propose to ensure that automated systems are designed and implemented to benefit society? BLUEPRINT FOR AN
    AI B ILL OF
    RIGHTS
    MAKING AUTOMATED
    SYSTEMS WORK FOR
    THE AMERICAN PEOPLE
    OCTOBER 2022
    What is the primary purpose of the Blueprint for an AI Bill of Rights as published by the White House Office of Science and Technology Policy in October 2022? About this Document
    The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
    published by the White House Office of Science and Technology Policy in October 2022. This framework was
    released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered
    world.” Its release follows a year of public engagement to inform this initiative. The framework is available
    online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights
    About the Office of Science and Technology Policy
    The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology
    Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office
    of the President with advice on the scientific, engineering, and technological aspects of the economy, national
    security, health, foreign relations, the environment, and the technological recovery and use of resources, among
    other topics. OSTP leads interagency science and technology policy coordination efforts, assists the Office of
    Management and Budget (OMB) with an annual review and analysis of Federal research and development in
    budgets, and serves as a source of scientific and technological analysis and judgment for the President with
    respect to major policies, plans, and programs of the Federal Government.
    Legal Disclaimer
    The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People is a white paper
    published by the White House Office of Science and Technology Policy. It is intended to support the
    development of policies and practices that protect civil rights and promote democratic values in the building,
    deployment, and governance of automated systems.
    The Blueprint for an AI Bill of Rights is non-binding and does not constitute U.S. government policy. It
    does not supersede, modify, or direct an interpretation of any existing statute, regulation, policy, or
    international instrument. It does not constitute binding guidance for the public or Federal agencies and
    therefore does not require compliance with the principles described herein. It also is not determinative of what
    the U.S. government’s position will be in any international negotiation. Adoption of these principles may not
    meet the requirements of existing statutes, regulations, policies, or international instruments, or the
    requirements of the Federal agencies that enforce them. These principles are not intended to, and do not,
    prohibit or limit any lawful activity of a government agency, including law enforcement, national security, or
    intelligence activities.
    The appropriate application of the principles set forth in this white paper depends significantly on the
    context in which automated systems are being utilized. In some circumstances, application of these principles
    in whole or in part may not be appropriate given the intended use of automated systems to achieve government
    agency missions. Future sector-specific guidance will likely be necessary and important for guiding the use of
    automated systems in certain settings such as AI systems used as part of school building security or automated
    health diagnostic systems.
    The Blueprint for an AI Bill of Rights recognizes that law enforcement activities require a balancing of
    equities, for example, between the protection of sensitive law enforcement information and the principle of
    notice; as such, notice may not be appropriate, or may need to be adjusted to protect sources, methods, and
    other law enforcement equities. Even in contexts where these principles may not apply in whole or in part,
    federal departments and agencies remain subject to judicial, privacy, and civil liberties oversight as well as
    existing policies and safeguards that govern automated systems, including, for example, Executive Order 13960,
    Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government (December 2020).
    This white paper recognizes that national security (which includes certain law enforcement and
    homeland security activities) and defense activities are of increased sensitivity and interest to our nation’s
    adversaries and are often subject to special requirements, such as those governing classified information and
    other protected data. Such activities require alternative, compatible safeguards through existing policies that
    govern automated systems and AI, such as the Department of Defense (DOD) AI Ethical Principles and
    Responsible AI Implementation Pathway and the Intelligence Community (IC) AI Ethics Principles and
    Framework. The implementation of these policies to national security and defense activities can be informed by
    the Blueprint for an AI Bill of Rights where feasible.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 5
  • per_device_eval_batch_size: 5
  • num_train_epochs: 2
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 5
  • per_device_eval_batch_size: 5
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step dot_map@100
0.4237 50 0.8383

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
434M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lw2134/policy_gte_large_2plus

Quantized
(5)
this model

Evaluation results