pos_thai

This model is a fine-tuned version of Geotrend/bert-base-th-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0935
  • Precision: 0.9525
  • Recall: 0.9540
  • F1: 0.9533
  • Accuracy: 0.9693

Model description

This model is train on thai pos_tag datasets to help with pos tagging in Thai language.

Example

from transformers import AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline

model = AutoModelForTokenClassification.from_pretrained("lunarlist/pos_thai")
tokenizer = AutoTokenizer.from_pretrained("lunarlist/pos_thai")

pipeline = TokenClassificationPipeline(model=model, tokenizer=tokenizer, grouped_entities=True)
outputs = pipeline("ภาษาไทย ง่าย นิดเดียว")
print(outputs)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1124 1.0 7344 0.1048 0.9505 0.9478 0.9492 0.9670
0.0866 2.0 14688 0.0935 0.9525 0.9540 0.9533 0.9693

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lunarlist/pos_thai

Finetuned
(5)
this model

Dataset used to train lunarlist/pos_thai