luissattelmayer's picture
End of training
2fed244 verified
metadata
library_name: transformers
license: mit
base_model: mlburnham/Political_DEBATE_large_v1.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: nli-stance-finetuning-laurer
    results: []

nli-stance-finetuning-laurer

This model is a fine-tuned version of mlburnham/Political_DEBATE_large_v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0075
  • Accuracy: 0.8140
  • F1 Macro: 0.7763
  • Accuracy Balanced: 0.7736
  • F1 Micro: 0.8140
  • Precision Macro: 0.8120
  • Recall Macro: 0.7736
  • Precision Micro: 0.8140
  • Recall Micro: 0.8140

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 10
  • seed: 1234
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Accuracy Balanced F1 Micro Precision Macro Recall Macro Precision Micro Recall Micro
0.3663 1.0 538 1.0075 0.8140 0.7763 0.7736 0.8140 0.8120 0.7736 0.8140 0.8140
0.3854 2.0 1076 1.1733 0.7326 0.6903 0.7285 0.7326 0.6831 0.7285 0.7326 0.7326
0.1758 3.0 1614 1.4595 0.7326 0.6823 0.7215 0.7326 0.6760 0.7215 0.7326 0.7326
0.0743 4.0 2152 1.6271 0.7442 0.6692 0.6851 0.7442 0.6634 0.6851 0.7442 0.7442
0.0343 5.0 2690 1.7175 0.7326 0.6575 0.6750 0.7326 0.6531 0.6750 0.7326 0.7326

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1