nli-finetuning-laurer-immigration-classification
This model is a fine-tuned version of MoritzLaurer/bge-m3-zeroshot-v2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5578
- Accuracy: 0.9032
- F1 Macro: 0.8969
- Accuracy Balanced: 0.8913
- F1 Micro: 0.9032
- Precision Macro: 0.9048
- Recall Macro: 0.8913
- Precision Micro: 0.9032
- Recall Micro: 0.9032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 151 | 0.3342 | 0.8763 | 0.8679 | 0.8619 | 0.8763 | 0.8769 | 0.8619 | 0.8763 | 0.8763 |
No log | 2.0 | 302 | 0.4733 | 0.8710 | 0.8680 | 0.8793 | 0.8710 | 0.8644 | 0.8793 | 0.8710 | 0.8710 |
No log | 3.0 | 453 | 0.5168 | 0.8978 | 0.8895 | 0.8796 | 0.8978 | 0.9073 | 0.8796 | 0.8978 | 0.8978 |
0.4084 | 4.0 | 604 | 0.5300 | 0.8871 | 0.8813 | 0.8804 | 0.8871 | 0.8823 | 0.8804 | 0.8871 | 0.8871 |
0.4084 | 5.0 | 755 | 0.5578 | 0.9032 | 0.8969 | 0.8913 | 0.9032 | 0.9048 | 0.8913 | 0.9032 | 0.9032 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.5.0+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3
- Downloads last month
- 1
Model tree for luissattelmayer/nli-finetuning-laurer-immigration-classification
Base model
BAAI/bge-m3-retromae
Quantized
MoritzLaurer/bge-m3-zeroshot-v2.0