|
--- |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
pipeline_tag: audio-classification |
|
tags: |
|
- music |
|
- audio |
|
--- |
|
|
|
# Description |
|
|
|
This model is a specialized version of the <b>distilhubert</b> model fine-tuned on the <b>gtzan</b> dataset for the task of Music Genre Classification. |
|
|
|
## Development |
|
- Kaggle Notebook: [Audio Data: Music Genre Classification](https://www.kaggle.com/code/lusfernandotorres/audio-data-music-genre-classification) |
|
|
|
|
|
## Training Parameters |
|
```python |
|
evaluation_strategy = 'epoch', |
|
save_strategy = 'epoch', |
|
load_best_model_at_end = True, |
|
metric_for_best_model = 'accuracy', |
|
learning_rate = 5e-5, |
|
seed = 42, |
|
per_device_train_batch_size = 8, |
|
per_device_eval_batch_size = 8, |
|
gradient_accumulation_steps = 1, |
|
num_train_epochs = 15, |
|
warmup_ratio = 0.1, |
|
fp16 = True, |
|
save_total_limit = 2, |
|
report_to = 'none' |
|
``` |
|
|
|
## Training and Validation Results |
|
|
|
```python |
|
Epoch Training Loss Validation Loss Accuracy |
|
1 No log 2.050576 0.395000 |
|
2 No log 1.387915 0.565000 |
|
3 No log 1.141497 0.665000 |
|
4 No log 1.052763 0.675000 |
|
5 1.354600 0.846402 0.745000 |
|
6 1.354600 0.858698 0.750000 |
|
7 1.354600 0.864531 0.730000 |
|
8 1.354600 0.765039 0.775000 |
|
9 1.354600 0.790847 0.785000 |
|
10 0.250100 0.873926 0.785000 |
|
11 0.250100 0.928275 0.770000 |
|
12 0.250100 0.851429 0.780000 |
|
13 0.250100 0.922214 0.770000 |
|
14 0.250100 0.916481 0.780000 |
|
15 0.028000 0.946075 0.770000 |
|
TrainOutput(global_step=1500, training_loss=0.5442592652638754, |
|
metrics={'train_runtime': 12274.2966, 'train_samples_per_second': 0.976, |
|
'train_steps_per_second': 0.122, 'total_flos': 8.177513845536e+17, 'train_loss': 0.5442592652638754, 'epoch': 15.0}) |
|
``` |
|
|
|
## Reference |
|
This model is based on the original <b>HuBERT</b> architecture, as detailed in: |
|
|
|
Hsu et al. (2021). HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units. [arXiv:2106.07447](https://arxiv.org/pdf/2106.07447.pdf) |
|
|