bert-base-cased-ag-news
BERT model fine-tuned on AG News classification dataset using a linear layer on top of the [CLS] token output, with 0.945 test accuracy.
How to use
Here is how to use this model to classify a given text:
from transformers import AutoTokenizer, BertForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained('lucasresck/bert-base-cased-ag-news')
model = BertForSequenceClassification.from_pretrained('lucasresck/bert-base-cased-ag-news')
text = "Is it soccer or football?"
encoded_input = tokenizer(text, return_tensors='pt', truncation=True, max_length=512)
output = model(**encoded_input)
Limitations and bias
Bias were not assessed in this model, but, considering that pre-trained BERT is known to carry bias, it is also expected for this model. BERT's authors say: "This bias will also affect all fine-tuned versions of this model."
Evaluation results
precision recall f1-score support
0 0.9539 0.9584 0.9562 1900
1 0.9884 0.9879 0.9882 1900
2 0.9251 0.9095 0.9172 1900
3 0.9127 0.9242 0.9184 1900
accuracy 0.9450 7600
macro avg 0.9450 0.9450 0.9450 7600
weighted avg 0.9450 0.9450 0.9450 7600
- Downloads last month
- 302
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.