SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-cased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/bert-en-es-pt-matryoshka_v3")
# Run inference
sentences = [
'All the grayed-out species disappear.',
'Van a desaparecer todas las especies en gris.',
'Los diamantes: quizá todos hemos oído hablar de la película "Diamante de sangre".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Datasets:
MSE-val-en-es
,MSE-val-en-pt
andMSE-val-en-pt-br
- Evaluated with
MSEEvaluator
Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
---|---|---|---|
negative_mse | -33.7751 | -34.0922 | -32.0787 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,560,698 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.46 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 26.67 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.
Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.
[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]
One thing I often ask about is ancient Greek and how this relates.
Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.
[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]
See, the thing we're doing right now is we're forcing people to learn mathematics.
Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.
[-0.01942082867026329, 0.1043599545955658, 0.009455358609557152, -0.02814248949289322, -0.017036128789186478, ...]
- Loss:
main.ModifiedMatryoshkaLoss
with these parameters:{ "loss": "MSELoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Unnamed Dataset
- Size: 6,974 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.68 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 27.31 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label Thank you so much, Chris.
Muchas gracias Chris.
[-0.0616779662668705, -0.044504180550575256, -0.032505787909030914, -0.06641441583633423, 0.003981734160333872, ...]
And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.
Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.
[0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]
I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.
He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.
[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]
- Loss:
main.ModifiedMatryoshkaLoss
with these parameters:{ "loss": "MSELoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 200per_device_eval_batch_size
: 200learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truelabel_names
: ['label']
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 200per_device_eval_batch_size
: 200per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: ['label']load_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
---|---|---|---|---|---|---|
0.0562 | 1000 | 0.0283 | 0.0251 | -22.4432 | -22.0406 | -25.1401 |
0.1123 | 2000 | 0.0241 | 0.0227 | -24.1255 | -23.9880 | -24.7731 |
0.1685 | 3000 | 0.0224 | 0.0214 | -25.3630 | -25.2889 | -25.4316 |
0.2247 | 4000 | 0.0214 | 0.0205 | -27.9225 | -28.0038 | -27.3050 |
0.2808 | 5000 | 0.0206 | 0.0199 | -29.4189 | -29.5093 | -28.8545 |
0.3370 | 6000 | 0.0202 | 0.0194 | -30.3190 | -30.4212 | -29.4919 |
0.3932 | 7000 | 0.0198 | 0.0191 | -31.3278 | -31.4753 | -30.3090 |
0.4493 | 8000 | 0.0195 | 0.0188 | -31.4089 | -31.6387 | -30.3325 |
0.5055 | 9000 | 0.0193 | 0.0186 | -32.0598 | -32.2536 | -30.9067 |
0.5617 | 10000 | 0.0191 | 0.0184 | -32.0989 | -32.2766 | -31.0155 |
0.6178 | 11000 | 0.0189 | 0.0183 | -32.2449 | -32.4302 | -30.9863 |
0.6740 | 12000 | 0.0187 | 0.0181 | -32.5800 | -32.8070 | -31.2254 |
0.7302 | 13000 | 0.0186 | 0.0180 | -32.9225 | -33.1228 | -31.5803 |
0.7863 | 14000 | 0.0185 | 0.0179 | -32.9227 | -33.1304 | -31.5169 |
0.8425 | 15000 | 0.0184 | 0.0178 | -33.0181 | -33.2681 | -31.5791 |
0.8987 | 16000 | 0.0183 | 0.0177 | -33.1309 | -33.3638 | -31.6113 |
0.9548 | 17000 | 0.0182 | 0.0176 | -33.1635 | -33.4414 | -31.6507 |
1.0110 | 18000 | 0.0181 | 0.0175 | -33.3615 | -33.6376 | -31.8086 |
1.0672 | 19000 | 0.018 | 0.0175 | -33.5781 | -33.8775 | -32.0611 |
1.1233 | 20000 | 0.0179 | 0.0174 | -33.5645 | -33.8531 | -32.0438 |
1.1795 | 21000 | 0.0179 | 0.0173 | -33.6646 | -33.9817 | -32.0500 |
1.2357 | 22000 | 0.0179 | 0.0173 | -33.7056 | -34.0088 | -32.1065 |
1.2918 | 23000 | 0.0178 | 0.0173 | -33.7397 | -34.0153 | -32.1810 |
1.3480 | 24000 | 0.0178 | 0.0172 | -33.7863 | -34.0887 | -32.1103 |
1.4042 | 25000 | 0.0177 | 0.0172 | -33.7981 | -34.0863 | -32.1683 |
1.4603 | 26000 | 0.0177 | 0.0171 | -33.7458 | -34.0451 | -32.0611 |
1.5165 | 27000 | 0.0177 | 0.0171 | -33.7650 | -34.0652 | -32.1565 |
1.5727 | 28000 | 0.0176 | 0.0171 | -33.7347 | -34.0446 | -32.0698 |
1.6288 | 29000 | 0.0176 | 0.0171 | -33.8011 | -34.1169 | -32.0683 |
1.6850 | 30000 | 0.0176 | 0.0170 | -33.7949 | -34.1010 | -32.1128 |
1.7412 | 31000 | 0.0176 | 0.0170 | -33.7713 | -34.0857 | -32.1020 |
1.7973 | 32000 | 0.0176 | 0.0170 | -33.8393 | -34.1676 | -32.1371 |
1.8535 | 33000 | 0.0175 | 0.0170 | -33.7687 | -34.0887 | -32.0748 |
1.9097 | 34000 | 0.0175 | 0.0170 | -33.7614 | -34.0854 | -32.0550 |
1.9659 | 35000 | 0.0175 | 0.0170 | -33.7751 | -34.0922 | -32.0787 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for luanafelbarros/bert-en-es-pt-matryoshka_v3
Base model
google-bert/bert-base-multilingual-casedEvaluation results
- Negative Mse on MSE val en esself-reported-33.775
- Negative Mse on MSE val en ptself-reported-34.092
- Negative Mse on MSE val en pt brself-reported-32.079