louisbrulenaudet's picture
Update README.md
92e1e77 verified
metadata
base_model: intfloat/multilingual-e5-base
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:296234
  - loss:CachedGISTEmbedLoss
  - legal
  - taxation
  - fiscalité
  - tax
widget:
  - source_sentence: >-
      query: Commentez les dispositions de l'article L. 643-9 et de l'article L.
      643-13 du Code de commerce, telles que modifiées par l'ordonnance n°
      2014-326 du 12 mars 2014.
    sentences:
      - >-
        passage: Conformément aux dispositions de l'article 344 O de l'annexe
        III du Code général des impôts, toute déclaration relative au deuxième
        alinéa de l'article 1635 quater P du même code, concernant la situation
        des biens immobiliers, doit impérativement être transmise par voie
        électronique auprès du service des impôts compétent. Cette déclaration
        inclura les informations requises listées du 1° au 6° de l'article 344
        N.
      - >-
        passage: Les formes et le délai de présentation de la demande de
        renseignements prévue au I de l'article L. 145 A ainsi que les
        conséquences attachées à leur respect sont régis conformément aux
        dispositions de l'article R. 611-12 du Code de commerce.
      - >-
        passage: Les dispositions de l'ordonnance n° 2014-326 du 12 mars 2014
        apportent des ajustements spécifiques à certains articles du Code de
        commerce, véritable pierre angulaire de la législation régissant les
        procédures collectives en France. En particulier, l'article L. 643-9
        connait une modificaton dans le cadre de la gestion de la liquidation
        judiciaire et de sa clôture pour insuffisance d'actif, impliquant ainsi
        des conditions plus précises quant à l'appréciation de la capacité à
        satisfaire l'intégralité du passif par les actifs disponibles.
        Parallèlement, l'article L. 643-13 procède à encadrer les conditions de
        reprise de la procédure de liquidation judiciaire, offrant ainsi un
        cadre légal actualisé pour les cas où la liquidation précédemment
        clôturée pourrait être réouverte. Ces modifications, qui s'appliquent
        rétroactivement aux procédures antérieurement engagées, traduisent une
        volonté législative de réconcilier les impératifs d'efficacité et de
        justice au sein du traitement des situations d'insolvabilité, assurant
        ainsi un équilibre entre les intérêts des créanciers et ceux de
        l'entreprise débitrice.
  - source_sentence: >-
      query: Analyser le cadre réglementaire défini par l'article D. 112-3 du
      Code monétaire et financier concernant les plafonds de paiement en espèces
      par les débiteurs ayant leur domicile fiscal en France.
    sentences:
      - >-
        passage: Quelles sont les conséquences, sur l'obligation fiscale d'une
        personne physique résidente en France, de la détention directe ou
        indirecte de parts dans une entité étrangère qui est soumise à un régime
        fiscal privilégié, et ce, en relation avec les dispositions de l'article
        123 bis du Code général des impôts concernant l'assimilation de ces
        bénéfices à des revenus de capitaux mobiliers ?
      - >-
        passage: Conformément aux dispositions de l'article D. 112-3 du Code
        monétaire et financier, le débiteur résidant fiscalement en France est
        astreint à une limitation de paiement en espèces à hauteur de 1 000
        euros. Cette mesure vise à encadrer les transactions et à réduire les
        risques associés à la fraude fiscale. Tout montant supérieur à ce
        plafond devra, de ce fait, être réglé par d'autres moyens de paiement
        tels que chèque barré, virement ou carte de paiement.
      - >-
        passage: Le Bulletin officiel des finances publiques-impôts (Bofip) dans
        son document BOI-REC-SOLID-30-10 précise la procédure d'exercice de
        l'action paulienne. L'action paulienne se caractérise par une phase
        préalable consistant à administrer des preuves relatives à la créance et
        au préjudice subi, ainsi qu'à la complicité entre le débiteur et les
        tiers acquéreurs. Par ailleurs, le juge est appelé à se positionner à la
        date de l'acte litigieux pour apprécier l'éventuelle fraude commise par
        le débiteur. La procédure judiciaire nécessite donc une approche
        minutieuse et conforme au cadre légal, impliquant la collecte d'éléments
        probants et l'appréciation judiciaire objective de la situation.
  - source_sentence: >-
      query: Analyser la mesure par laquelle les associés ou membres d'un
      groupement forestier doivent répondre vis-à-vis de la présentation de
      certains documents à l'administration fiscale, en se référant aux
      dispositions de l'article 46 AGI annexé au code général des impôts.
    sentences:
      - >-
        passage: Conformément aux articles 164 F quinvicies et 164 F sexvicies
        de l'Annexe IV du Code général des impôts, les adhérents des
        associations agréées sont tenus de notifier par écrit à leur association
        respective toute mesure prise en réponse aux exigences disposées. Il
        incombe alors à l'association de vérifier et de s'assurer que ces
        obligations soient dûment remplies.
      - >-
        passage: D'après l'article 46 AGJ de l'annexe III du Code général des
        impôts, il est impératif que les associés ou membres d'un groupement
        forestier maintiennent à la disposition de l'administration fiscale le
        document spécifié au II de l'article 46 AGI. Ce document est essentiel
        pour attester de la conformité aux exigences fiscales liées au
        groupement et pour s'assurer de la pérennité des engagements pris par
        les membres. Ces procédures de documentation sont cruciales pour
        garantir la transparence et permettre à l'administration fiscale
        d'effectuer les vérifications nécessaires.
      - >-
        passage: L'interaction entre le Code des douanes et le Code de la route
        se concrétise par la provision de l'article 64 B du Code des douanes. Ce
        dernier établit une procédure formelle où les fonctionnaires des douanes
        sont en droit de requérir des données spécifiques mentionnées dans les
        articles L. 330-2 à L. 330-4 du Code de la route. Ces informations
        touchent principalement à des aspects cruciaux tels que la circulation
        et l'enregistrement des véhicules, éléments essentiels pour diverses
        opérations de douane, incluant mais sans se limiter au contrôle du
        trafic transfrontalier et à la surveillance des infractions liées à la
        fiscalité des véhicules. L'efficience des opérations douanières s'en
        trouve renforcée, permettant une synergie entre deux corps étatiques,
        facilitant ainsi une application plus stricte et cohérente des lois dans
        les domaines correspondants.
  - source_sentence: >-
      query: Analysez l'influence d'un transfert de titres dans un patrimoine
      fiduciaire sur la composition d'un groupe fiscal, en prenant en compte les
      dispositions du Code général des impôts.
    sentences:
      - >-
        passage: Conformément au cinquième alinéa du a ter du I de l'article 219
        du Code général des impôts, le traitement fiscal des transferts de
        titres entre divers comptes du bilan, notamment vers le compte des
        titres de participation ou vers toute subdivision affectée aux 'titres
        relevant du régime des plus-values à long terme', implique l'intégration
        des plus ou moins-values générées par ces transferts dans le résultat
        fiscal imposable. Cette intégration est effectuée selon les normes et le
        taux de droit commun applicables lors de l'exercice fiscal durant lequel
        les titres sont cédés. Les plus-values réalisées à long terme à la suite
        de tels transferts contribuent à déterminer la plus ou moins-value nette
        à long terme pour l'exercice concerné, au terme duquel cesse le bénéfice
        du report. Les plus ou moins-values à court terme qui émergent de ces
        opérations sont également incorporées au résultat imposable, respectant
        les conditions de droit commun de l'exercice de cession.
      - >-
        passage: Les agents fiscaux disposent de droits étendus et spécifiques
        pour l'accès aux documents comptables des entités lucratives,
        conformément aux articles L. 85 et R*85-1 du Livre des procédures
        fiscales. Ces articles leur confèrent le pouvoir d'exiger la
        communication de tous documents utiles au contrôle fiscal. Par ailleurs,
        le Code de commerce, aux articles L. 123-12 à L. 123-24, précise les
        obligations de tenue et de conservation des livres comptables,
        garantissant ainsi aux agents fiscaux un droit de regard sur la gestion
        financière des activités commerciales. Ces dispositions assurent une
        base juridique robuste, autorisant les intervenants fiscaux à requérir
        et vérifier toute documentation nécessaire à l'évaluation de la
        conformité fiscale.
      - >-
        passage: L'analyse de l'impact d'un transfert de titres dans un
        patrimoine fiduciaire, en matière de composition de groupe fiscal,
        s'effectue à l'aune de l'article 223 A et de l'article 238 quater B du
        Code général des impôts. En principe, un transfert de propriété des
        titres vers un patrimoine fiduciaire équivaut à leur exclusion du calcul
        du seuil de détention de capital pour l'appartenance à un groupe fiscal.
        Cependant, une exception spécifique autorise la prise en compte des
        titres transférés si deux conditions prépondérantes sont remplies :
        l'attachement de droits de vote et de dividendes aux titres cédés et la
        rétention par le constituant de l'exercice des droits de vote ou leur
        utilisation par le fiduciaire conformément aux directives du
        constituant, à condition que les termes contractuels de la fiducie ne
        s'y opposent pas. Cette particularité légale favorise ainsi la
        continuité ou l'intégration fiscale au sein du groupe pour les sociétés
        transférantes, tant que les conditions de détention sont observées, et
        ce, pour les exercices clôturés postérieurement au 31 décembre 2014.
  - source_sentence: >-
      query: Décrivez avec précision les étapes détaillées requises pour traiter
      les réclamations collectives résultant de désastres agricoles comme
      définies dans l'article R*198-2 du Livre des procédures fiscales.
    sentences:
      - >-
        passage: Conformément à l'article 310 K annexé au code général des
        impôts, l'usine marémotrice de la Rance, localisée entre Saint-Malo et
        La Richardais en Ille-et-Vilaine, peut prétendre à une déduction
        complémentaire. Cette dernière, prévue par le dernier alinéa de
        l'article 1499 du même code, se voit attribuer un taux de 50 %. Ce
        dispositif fiscal s'avère donc pertinent pour l'usine considérée, lui
        permettant de bénéficier d'un avantage significatif quant à sa charge
        fiscale.
      - >-
        passage: Selon les dispositions de l'article R*196-6 du Livre des
        procédures fiscales, il est attribué aux sujets fiscaux un intervalle
        précisément défini pour élever des réclamations à l'égard des taxes,
        cotisations et autres prélèvements relatifs aux céréales et leurs
        transformés. Ce délai se prolonge jusqu'à la fin de la campagne agricole
        suivante celle au cours de laquelle l'avis de mise en recouvrement de la
        taxe a été notifié ou le règlement de l'imposition contestée effectué,
        permettant ainsi aux parties prenantes de se prévaloir de leurs
        prérogatives contestataires avec une certitude temporelle.
      - >-
        passage: Selon l'article R*198-2 du Livre des procédures fiscales, le
        traitement des réclamations collectives en cas de catastrophes
        naturelles impactant les cultures agricoles, incluant des phénomènes
        tels que la grêle ou les inondations, exige la collaboration de
        plusieurs entités administratives. Initialement, deux commissaires sont
        nommés par l'administration fiscale pour superviser le processus. Ils
        sont assistés par un délégué de l'administration des impôts. Avant toute
        action, le maire de la commune affectée est notifié au moins dix jours
        avant l'inspection prévue, et il est chargé de communiquer cette date
        aux résidents via des affichages publics. Les agriculteurs affectés
        doivent alors rapporter leurs pertes à la mairie avant la réalisation
        d'un constat officiel par l'inspecteur des impôts, qui sera consigné
        dans un procès-verbal. Une fois ce document clôturé, aucune réclamation
        supplémentaire n'est acceptée.
co2_eq_emissions:
  emissions: 935.6048701736584
  energy_consumed: 2.5345915368808805
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD EPYC 9V84 96-Core Processor
  ram_total_size: 314.6862907409668
  hours_used: 4.578
  hardware_used: 1 x NVIDIA H100 NVL
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-base
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Lemone information retrieval
          type: Lemone-information-retrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.9743095696852923
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9910083493898523
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.993577392421323
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9955041746949261
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9743095696852923
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3303361164632841
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1987154784842646
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09955041746949261
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9743095696852923
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9910083493898523
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.993577392421323
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9955041746949261
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9861914645525343
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9830603725112395
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9832992231274837
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.9743095696852923
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9910083493898523
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.993577392421323
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9955041746949261
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9743095696852923
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3303361164632841
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.1987154784842646
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09955041746949261
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.9743095696852923
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9910083493898523
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.993577392421323
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9955041746949261
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9861914645525343
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9830603725112395
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9832992231274837
            name: Dot Map@100
license: apache-2.0
language:
  - fr
datasets:
  - louisbrulenaudet/code-impots
  - louisbrulenaudet/code-impots-annexe-iv
  - louisbrulenaudet/code-impots-annexe-iii
  - louisbrulenaudet/code-impots-annexe-i
  - louisbrulenaudet/code-impots-annexe-ii
  - louisbrulenaudet/livre-procedures-fiscales
  - louisbrulenaudet/bofip

Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation

This series is made up of 7 models, 3 basic models of different sizes trained on 1 epoch, 3 models trained on 2 epochs making up the Boost series and a Pro model with a non-Roberta architecture.

This sentence transformers model, specifically designed for French taxation, has been fine-tuned on a dataset comprising 43 million tokens, integrating a blend of semi-synthetic and fully synthetic data generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation.

The model is tailored to meet the specific demands of information retrieval across large-scale tax-related corpora, supporting the implementation of production-ready Retrieval-Augmented Generation (RAG) applications. Its primary purpose is to enhance the efficiency and accuracy of legal processes in the taxation domain, with an emphasis on delivering consistent performance in real-world settings, while also contributing to advancements in legal natural language processing research.

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Developed by: Louis Brulé Naudet
  • Funded by: Microsoft for Startups
  • Shared by: Louis Brulé Naudet
  • Model type: Sentence Transformers
  • Language(s) (NLP): FR
  • License: Apache 2
  • Finetuned from model: intfloat/multilingual-e5-base

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("louisbrulenaudet/lemone-embed-m-boost")
# Run inference
sentences = [
    "query: Décrivez avec précision les étapes détaillées requises pour traiter les réclamations collectives résultant de désastres agricoles comme définies dans l'article R*198-2 du Livre des procédures fiscales.",
    "passage: Selon l'article R*198-2 du Livre des procédures fiscales, le traitement des réclamations collectives en cas de catastrophes naturelles impactant les cultures agricoles, incluant des phénomènes tels que la grêle ou les inondations, exige la collaboration de plusieurs entités administratives. Initialement, deux commissaires sont nommés par l'administration fiscale pour superviser le processus. Ils sont assistés par un délégué de l'administration des impôts. Avant toute action, le maire de la commune affectée est notifié au moins dix jours avant l'inspection prévue, et il est chargé de communiquer cette date aux résidents via des affichages publics. Les agriculteurs affectés doivent alors rapporter leurs pertes à la mairie avant la réalisation d'un constat officiel par l'inspecteur des impôts, qui sera consigné dans un procès-verbal. Une fois ce document clôturé, aucune réclamation supplémentaire n'est acceptée.",
    "passage: Selon les dispositions de l'article R*196-6 du Livre des procédures fiscales, il est attribué aux sujets fiscaux un intervalle précisément défini pour élever des réclamations à l'égard des taxes, cotisations et autres prélèvements relatifs aux céréales et leurs transformés. Ce délai se prolonge jusqu'à la fin de la campagne agricole suivante celle au cours de laquelle l'avis de mise en recouvrement de la taxe a été notifié ou le règlement de l'imposition contestée effectué, permettant ainsi aux parties prenantes de se prévaloir de leurs prérogatives contestataires avec une certitude temporelle.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9743
cosine_accuracy@3 0.991
cosine_accuracy@5 0.9936
cosine_accuracy@10 0.9955
cosine_precision@1 0.9743
cosine_precision@3 0.3303
cosine_precision@5 0.1987
cosine_precision@10 0.0996
cosine_recall@1 0.9743
cosine_recall@3 0.991
cosine_recall@5 0.9936
cosine_recall@10 0.9955
cosine_ndcg@10 0.9862
cosine_mrr@10 0.9831
cosine_map@100 0.9833
dot_accuracy@1 0.9743
dot_accuracy@3 0.991
dot_accuracy@5 0.9936
dot_accuracy@10 0.9955
dot_precision@1 0.9743
dot_precision@3 0.3303
dot_precision@5 0.1987
dot_precision@10 0.0996
dot_recall@1 0.9743
dot_recall@3 0.991
dot_recall@5 0.9936
dot_recall@10 0.9955
dot_ndcg@10 0.9862
dot_mrr@10 0.9831
dot_map@100 0.9833

Training Details

Training Dataset

  • Size: 296,234 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 24 tokens
    • mean: 54.2 tokens
    • max: 179 tokens
    • min: 75 tokens
    • mean: 182.28 tokens
    • max: 332 tokens
    • min: 53 tokens
    • mean: 190.2 tokens
    • max: 456 tokens
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
      (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 2.535 kWh
  • Carbon Emitted: 0.936 kg of CO2
  • Hours Used: 4.578 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA H100 NVL
  • CPU Model: AMD EPYC 9V84 96-Core Processor
  • RAM Size: 314.69 GB

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

If you use this code in your research, please use the following BibTeX entry.

@misc{louisbrulenaudet2024,
  author =       {Louis Brulé Naudet},
  title =        {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation},
  year =         {2024}
  howpublished = {\url{https://huggingface.co./datasets/louisbrulenaudet/lemone-embed-m-boost}},
}

Feedback

If you have any feedback, please reach out at [email protected].