Romulus, continually pre-trained models for French law.

Romulus is a series of continually pre-trained models enriched in French law and intended to serve as the basis for a fine-tuning process on labeled data. Please note that these models have not been aligned for the production of usable text as they stand, and will certainly need to be fine-tuned for the desired tasks in order to produce satisfactory results.

The training corpus is made up of around 34,864,949 tokens (calculated with the meta-llama/Meta-Llama-3.1-8B-Instruct tokenizer).

Hyperparameters

The following table outlines the key hyperparameters used for training Romulus.

Parameter Description Value
max_seq_length Maximum sequence length for the model 4096
load_in_4bit Whether to load the model in 4-bit precision False
model_name Pre-trained model name from Hugging Face meta-llama/Meta-Llama-3.1-8B-Instruct
r Rank of the LoRA adapter 128
lora_alpha Alpha value for the LoRA module 32
lora_dropout Dropout rate for LoRA layers 0
bias Bias type for LoRA adapters none
use_gradient_checkpointing Whether to use gradient checkpointing unsloth
train_batch_size Per device training batch size 8
gradient_accumulation_steps Number of gradient accumulation steps 8
warmup_ratio Warmup steps as a fraction of total steps 0.1
num_train_epochs Number of training epochs 1
learning_rate Learning rate for the model 5e-5
embedding_learning_rate Learning rate for embeddings 1e-5
optim Optimizer used for training adamw_8bit
weight_decay Weight decay to prevent overfitting 0.01
lr_scheduler_type Type of learning rate scheduler linear

Training script

Romulus was trained using Unsloth on a Nvidia H100 Azure EST US instance provided by the Microsoft for Startups program from this script:

# -*- coding: utf-8 -*-
import os

from typing import (
    Dict,
)

from datasets import load_dataset
from unsloth import (
    FastLanguageModel,
    is_bfloat16_supported,
    UnslothTrainer,
    UnslothTrainingArguments,
)

max_seq_length = 4096
dtype = None
load_in_4bit = False

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="meta-llama/Meta-Llama-3.1-8B-Instruct",
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    token="hf_token",
)

model = FastLanguageModel.get_peft_model(
    model,
    r=128,
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
        "embed_tokens",
        "lm_head",
    ],
    lora_alpha=32,
    lora_dropout=0,
    bias="none",
    use_gradient_checkpointing="unsloth",
    random_state=3407,
    use_rslora=True,
    loftq_config=None,
)

prompt = """### Référence :
{}
### Contenu :
{}"""

EOS_TOKEN = tokenizer.eos_token

def formatting_prompts_func(examples):
    """
    Format input examples into prompts for a language model.

    This function takes a dictionary of examples containing titles and texts,
    combines them into formatted prompts, and appends an end-of-sequence token.

    Parameters
    ----------
    examples : dict
        A dictionary containing two keys:
        - 'title': A list of titles.
        - 'text': A list of corresponding text content.

    Returns
    -------
    dict
        A dictionary with a single key 'text', containing a list of formatted prompts.

    Notes
    -----
    - The function assumes the existence of a global `prompt` variable, which is a
      formatting string used to combine the title and text.
    - The function also assumes the existence of a global `EOS_TOKEN` variable,
      which is appended to the end of each formatted prompt.
    - The input lists 'title' and 'text' are expected to have the same length.

    Examples
    --------
    >>> examples = {
    ...     'title': ['Title 1', 'Title 2'],
    ...     'text': ['Content 1', 'Content 2']
    ... }
    >>> formatting_cpt_prompts_func(examples)
    {'text': ['<formatted_prompt_1><EOS>', '<formatted_prompt_2><EOS>']}
    """
    refs = examples["ref"]
    texts = examples["texte"]
    outputs = []

    for ref, text in zip(refs, texts):
        text = prompt.format(ref, text) + EOS_TOKEN
        outputs.append(text)

    return {
        "text": outputs,
    }


cpt_dataset = load_dataset(
    "louisbrulenaudet/Romulus-cpt-fr",
    split="train",
    token="hf_token",
)

cpt_dataset = cpt_dataset.map(
    formatting_prompts_func,
    batched=True,
)

trainer = UnslothTrainer(
    model=model,
    tokenizer=tokenizer,
    train_dataset=cpt_dataset,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    dataset_num_proc=2,
    args=UnslothTrainingArguments(
        per_device_train_batch_size=8,
        gradient_accumulation_steps=8,
        warmup_ratio=0.1,
        num_train_epochs=1,
        learning_rate=5e-5,
        embedding_learning_rate=1e-5,
        fp16=not is_bfloat16_supported(),
        bf16=is_bfloat16_supported(),
        logging_steps=1,
        report_to="wandb",
        save_steps=350,
        run_name="romulus-cpt",
        optim="adamw_8bit",
        weight_decay=0.01,
        lr_scheduler_type="linear",
        seed=3407,
        output_dir="outputs",
    ),
)

trainer_stats = trainer.train()

Citing & Authors

If you use this code in your research, please use the following BibTeX entry.

@misc{louisbrulenaudet2024,
  author =       {Louis Brulé Naudet},
  title =        {Romulus, continually pre-trained models for French law},
  year =         {2024}
  howpublished = {\url{https://huggingface.co./datasets/louisbrulenaudet/Romulus-cpt-fr}},
}

Feedback

If you have any feedback, please reach out at [email protected].

Downloads last month
295
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for louisbrulenaudet/Romulus-cpt-Llama-3.1-8B-v0.1-Instruct

Finetuned
(587)
this model
Quantizations
1 model

Dataset used to train louisbrulenaudet/Romulus-cpt-Llama-3.1-8B-v0.1-Instruct

Spaces using louisbrulenaudet/Romulus-cpt-Llama-3.1-8B-v0.1-Instruct 2