loucad's picture
update model card README.md
4d9656d
metadata
license: other
base_model: apple/mobilevit-xx-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: mobilevit-xx-small-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9507407407407408

mobilevit-xx-small-finetuned-eurosat

This model is a fine-tuned version of apple/mobilevit-xx-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1926
  • Accuracy: 0.9507

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5074 1.0 190 1.3433 0.7078
0.9398 2.0 380 0.7177 0.85
0.7035 3.0 570 0.4252 0.9070
0.5435 4.0 760 0.3080 0.9281
0.5007 5.0 950 0.2465 0.9389
0.4533 6.0 1140 0.2291 0.9444
0.3961 7.0 1330 0.1991 0.9496
0.3949 8.0 1520 0.1926 0.9507
0.4302 9.0 1710 0.1928 0.95
0.4061 10.0 1900 0.1931 0.9463

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.1
  • Tokenizers 0.13.3