Pythia-160m supervised finetuned using TRLx library with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-160m for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-160m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.1894 ± 0.0115
none 0 acc_norm 0.2235 ± 0.0122
arc_easy 1 none 0 acc 0.3889 ± 0.0100
none 0 acc_norm 0.3737 ± 0.0099
boolq 2 none 0 acc 0.5346 ± 0.0087
hellaswag 1 none 0 acc 0.2801 ± 0.0045
none 0 acc_norm 0.2949 ± 0.0046
lambada_openai 1 none 0 perplexity 439.3682 ± 23.5771
none 0 acc 0.0984 ± 0.0041
openbookqa 1 none 0 acc 0.1580 ± 0.0163
none 0 acc_norm 0.2260 ± 0.0187
piqa 1 none 0 acc 0.5936 ± 0.0115
none 0 acc_norm 0.5865 ± 0.0115
sciq 1 none 0 acc 0.5710 ± 0.0157
none 0 acc_norm 0.6290 ± 0.0153
wikitext 2 none 0 word_perplexity 87.3261 ± N/A
none 0 byte_perplexity 2.3068 ± N/A
none 0 bits_per_byte 1.2059 ± N/A
winogrande 1 none 0 acc 0.4878 ± 0.0140

hf (pretrained=lomahony/pythia-160m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.2022 ± 0.0117
none 5 acc_norm 0.2270 ± 0.0122
arc_easy 1 none 5 acc 0.3733 ± 0.0099
none 5 acc_norm 0.3746 ± 0.0099
boolq 2 none 5 acc 0.5413 ± 0.0087
hellaswag 1 none 5 acc 0.2770 ± 0.0045
none 5 acc_norm 0.2853 ± 0.0045
lambada_openai 1 none 5 perplexity 1644.8526 ± 87.8870
none 5 acc 0.0491 ± 0.0030
openbookqa 1 none 5 acc 0.1400 ± 0.0155
none 5 acc_norm 0.2200 ± 0.0185
piqa 1 none 5 acc 0.5892 ± 0.0115
none 5 acc_norm 0.5854 ± 0.0115
sciq 1 none 5 acc 0.5100 ± 0.0158
none 5 acc_norm 0.6020 ± 0.0155
wikitext 2 none 5 word_perplexity 87.3261 ± N/A
none 5 byte_perplexity 2.3068 ± N/A
none 5 bits_per_byte 1.2059 ± N/A
winogrande 1 none 5 acc 0.5178 ± 0.0140
Downloads last month
108
Safetensors
Model size
162M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lomahony/pythia-160m-helpful-sft

Finetunes
1 model

Dataset used to train lomahony/pythia-160m-helpful-sft

Collection including lomahony/pythia-160m-helpful-sft