training_results

This model is a fine-tuned version of ai-forever/ruElectra-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6856
  • Accuracy: 0.7135
  • Recall: 0.6688
  • Precision: 0.7321
  • F1: 0.6855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
No log 1.0 200 1.0503 0.6462 0.5404 0.5573 0.5309
No log 2.0 400 0.9312 0.6842 0.6358 0.6068 0.5981
0.9761 3.0 600 0.9141 0.7193 0.6410 0.6629 0.6447
0.9761 4.0 800 1.1036 0.7193 0.6453 0.6843 0.6516
0.3389 5.0 1000 1.3396 0.7135 0.6512 0.7203 0.6576
0.3389 6.0 1200 1.4660 0.7251 0.6688 0.7587 0.6759
0.3389 7.0 1400 1.4835 0.7135 0.6656 0.6910 0.6640
0.1627 8.0 1600 1.8635 0.7135 0.6535 0.7441 0.6673
0.1627 9.0 1800 1.5689 0.7368 0.7140 0.7412 0.7192
0.0893 10.0 2000 1.9628 0.7047 0.6885 0.7050 0.6842
0.0893 11.0 2200 1.9155 0.7339 0.6814 0.7328 0.6995
0.0893 12.0 2400 2.0020 0.7398 0.7086 0.7351 0.7064
0.0781 13.0 2600 2.0432 0.7193 0.7005 0.7265 0.6876
0.0781 14.0 2800 1.8877 0.7544 0.7385 0.7634 0.7415
0.0435 15.0 3000 2.2208 0.7281 0.6876 0.7271 0.6871
0.0435 16.0 3200 1.9514 0.7485 0.7071 0.7438 0.7169
0.0435 17.0 3400 2.0358 0.7368 0.7551 0.7406 0.7402
0.0405 18.0 3600 2.2364 0.7310 0.6250 0.6655 0.6307
0.0405 19.0 3800 2.3225 0.7164 0.6779 0.7234 0.6868
0.0511 20.0 4000 2.1369 0.7310 0.6826 0.7670 0.7089
0.0511 21.0 4200 2.2229 0.7427 0.6981 0.7783 0.7145
0.0511 22.0 4400 2.2711 0.7222 0.6650 0.7214 0.6671
0.0382 23.0 4600 2.4241 0.7222 0.6556 0.7826 0.6834
0.0382 24.0 4800 2.0575 0.7368 0.6767 0.7238 0.6804
0.0413 25.0 5000 2.5485 0.7076 0.6681 0.6842 0.6682
0.0413 26.0 5200 2.2235 0.7222 0.6474 0.6889 0.6536
0.0413 27.0 5400 2.5252 0.7105 0.6835 0.7028 0.6793
0.035 28.0 5600 2.5843 0.7164 0.6438 0.7341 0.6654
0.035 29.0 5800 2.6856 0.7135 0.6688 0.7321 0.6855

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for logiczmaksimka/training_results

Finetuned
(3)
this model