wav2vec2-base-960h-no-softmax-quality-daps

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0422
  • Accuracy: 0.9925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6897 0.9630 13 0.6386 0.9318
0.6402 2.0 27 0.3482 0.9943
0.2867 2.9630 40 0.1576 0.9938
0.1729 4.0 54 0.0806 0.9960
0.1058 4.9630 67 0.0539 0.9952
0.0542 6.0 81 0.0446 0.9947
0.0393 6.9630 94 0.0409 0.9943
0.0398 8.0 108 0.0401 0.9938
0.0325 8.9630 121 0.0459 0.9921
0.0251 10.0 135 0.0444 0.9925
0.0331 10.9630 148 0.0418 0.9930
0.0185 12.0 162 0.0373 0.9930
0.0254 12.9630 175 0.0367 0.9930
0.0238 14.0 189 0.0423 0.9925
0.023 14.4444 195 0.0422 0.9925

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.12.0
  • Tokenizers 0.19.1
Downloads last month
167
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for loganhart/wav2vec2-base-960h-no-softmax-quality-daps

Finetuned
(123)
this model