|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: zh |
|
datasets: |
|
- lmqg/qg_zhquad |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- question generation |
|
widget: |
|
- text: "南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。" |
|
example_title: "Question Generation Example 1" |
|
- text: "芝加哥大学的<hl> 1960—61 <hl>集团理论年汇集了Daniel Gorenstein、John G. Thompson和Walter Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域" |
|
example_title: "Question Generation Example 2" |
|
model-index: |
|
- name: lmqg/mt5-small-zhquad-qg |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qg_zhquad |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 (Question Generation) |
|
type: bleu4_question_generation |
|
value: 13.33 |
|
- name: ROUGE-L (Question Generation) |
|
type: rouge_l_question_generation |
|
value: 32.71 |
|
- name: METEOR (Question Generation) |
|
type: meteor_question_generation |
|
value: 22.75 |
|
- name: BERTScore (Question Generation) |
|
type: bertscore_question_generation |
|
value: 76.37 |
|
- name: MoverScore (Question Generation) |
|
type: moverscore_question_generation |
|
value: 56.87 |
|
--- |
|
|
|
# Model Card of `lmqg/mt5-small-zhquad-qg` |
|
This model is fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) for question generation task on the [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
|
|
|
|
### Overview |
|
- **Language model:** [google/mt5-small](https://huggingface.co./google/mt5-small) |
|
- **Language:** zh |
|
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
from lmqg import TransformersQG |
|
|
|
# initialize model |
|
model = TransformersQG(language="zh", model="lmqg/mt5-small-zhquad-qg") |
|
|
|
# model prediction |
|
questions = model.generate_q(list_context="南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。", list_answer="南安普敦中央") |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text2text-generation", "lmqg/mt5-small-zhquad-qg") |
|
output = pipe("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
|
|
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co./lmqg/mt5-small-zhquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:-----------|--------:|:--------|:-----------------------------------------------------------------| |
|
| BERTScore | 76.37 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_1 | 35.17 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_2 | 24.12 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_3 | 17.62 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_4 | 13.33 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| METEOR | 22.75 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| MoverScore | 56.87 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| ROUGE_L | 32.71 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qg_zhquad |
|
- dataset_name: default |
|
- input_types: paragraph_answer |
|
- output_types: question |
|
- prefix_types: None |
|
- model: google/mt5-small |
|
- max_length: 512 |
|
- max_length_output: 32 |
|
- epoch: 11 |
|
- batch: 16 |
|
- lr: 0.0005 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 4 |
|
- label_smoothing: 0.15 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co./lmqg/mt5-small-zhquad-qg/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|