license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ko
datasets:
- lmqg/qg_koquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로
출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.
example_title: Question Generation Example 1
- text: >-
백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진
타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다.
example_title: Question Generation Example 2
- text: <hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mt5-base-koquad
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_koquad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.12184665382055122
- name: ROUGE-L
type: rouge-l
value: 0.2856948017709817
- name: METEOR
type: meteor
value: 0.29623847263524816
- name: BERTScore
type: bertscore
value: 0.8451586993172961
- name: MoverScore
type: moverscore
value: 0.8335888774638588
Model Card of lmqg/mt5-base-koquad
This model is fine-tuned version of google/mt5-base for question generation task on the
lmqg/qg_koquad (dataset_name: default) via lmqg
.
Please cite our paper if you use the model (TBA).
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
Overview
- Language model: google/mt5-base
- Language: ko
- Training data: lmqg/qg_koquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/mt5-base-koquad'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
question = pipe('1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.')
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_koquad | default | 0.122 | 0.286 | 0.296 | 0.845 | 0.834 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_koquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 11
- batch: 4
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }