EgoLife
Collection
CVPR 2025 - EgoLife: Towards Egocentric Life Assistant
•
9 items
•
Updated
•
2
EgoGPT-7b-EgoIT-EgoLife
is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. Built on the foundation of llava-onevision-qwen2-7b-ov
, it has been finetuned on EgoIT-EgoLife-141k
egocentric datasets, which contains EgoIT-99k and EgoLife-42k.
EgoGPT excels in two primary scenarios:
For further details, please refer to the following resources:
git clone https://github.com/egolife-ntu/EgoLife
cd EgoLife/EgoGPT
conda create -n egogpt python=3.10
conda activate egogpt
pip install --upgrade pip
pip install -e .
3. Install the dependencies for training and inference.
```shell
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
import argparse
import copy
import os
import re
import sys
import warnings
import numpy as np
import requests
import soundfile as sf
import torch
import torch.distributed as dist
import whisper
from decord import VideoReader, cpu
from egogpt.constants import (
DEFAULT_IMAGE_TOKEN,
DEFAULT_SPEECH_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
SPEECH_TOKEN_INDEX,
)
from egogpt.conversation import SeparatorStyle, conv_templates
from egogpt.mm_utils import get_model_name_from_path, process_images
from egogpt.model.builder import load_pretrained_model
from PIL import Image
from scipy.signal import resample
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def load_video(video_path=None, audio_path=None, max_frames_num=16, fps=1):
if audio_path is not None:
speech, sample_rate = sf.read(audio_path)
if sample_rate != 16000:
target_length = int(len(speech) * 16000 / sample_rate)
speech = resample(speech, target_length)
if speech.ndim > 1:
speech = np.mean(speech, axis=1)
speech = whisper.pad_or_trim(speech.astype(np.float32))
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
speech_lengths = torch.LongTensor([speech.shape[0]])
else:
speech = torch.zeros(3000, 128)
speech_lengths = torch.LongTensor([3000])
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
total_frame_num = len(vr)
avg_fps = round(vr.get_avg_fps() / fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
if max_frames_num > 0 and len(frame_idx) > max_frames_num:
uniform_sampled_frames = np.linspace(
0, total_frame_num - 1, max_frames_num, dtype=int
)
frame_idx = uniform_sampled_frames.tolist()
video = vr.get_batch(frame_idx).asnumpy()
return video, speech, speech_lengths
def split_text(text, keywords):
pattern = "(" + "|".join(map(re.escape, keywords)) + ")"
parts = re.split(pattern, text)
parts = [part for part in parts if part]
return parts
def main(
pretrained_path="checkpoints/EgoGPT-7b-EgoIT-EgoLife",
video_path=None,
audio_path=None,
query="Please describe the video in detail.",
):
warnings.filterwarnings("ignore")
setup(0, 1)
device = "cuda"
device_map = "cuda"
tokenizer, model, max_length = load_pretrained_model(
pretrained_path, device_map=device_map
)
model.eval()
conv_template = "qwen_1_5"
question = f"<image>\n<speech>\n\n{query}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
video, speech, speech_lengths = load_video(
video_path=video_path, audio_path=audio_path
)
speech = torch.stack([speech]).to(device).half()
processor = model.get_vision_tower().image_processor
processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"]
image = [(processed_video, video[0].size, "video")]
parts = split_text(prompt_question, ["<image>", "<speech>"])
input_ids = []
for part in parts:
if part == "<image>":
input_ids.append(IMAGE_TOKEN_INDEX)
elif part == "<speech>":
input_ids.append(SPEECH_TOKEN_INDEX)
else:
input_ids.extend(tokenizer(part).input_ids)
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0).to(device)
image_tensor = [image[0][0].half()]
image_sizes = [image[0][1]]
generate_kwargs = {"eos_token_id": tokenizer.eos_token_id}
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
speech=speech,
speech_lengths=speech_lengths,
do_sample=False,
temperature=0.5,
max_new_tokens=4096,
modalities=["video"],
**generate_kwargs,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_path", type=str, default="lmms-lab/EgoGPT-7b-EgoIT-EgoLife"
)
parser.add_argument("--video_path", type=str, default=None)
parser.add_argument("--audio_path", type=str, default=None)
parser.add_argument(
"--query", type=str, default="Please describe the video in detail."
)
args = parser.parse_args()
main(args.pretrained_path, args.video_path, args.audio_path, args.query)
@inproceedings{yang2025egolife,
title={EgoLife: Towards Egocentric Life Assistant},
author={Yang, Jingkang and Liu, Shuai and Guo, Hongming and Dong, Yuhao and Zhang, Xiamengwei and Zhang, Sicheng and Wang, Pengyun and Zhou, Zitang and Xie, Binzhu and Wang, Ziyue and Ouyang, Bei and Lin, Zhengyu and Cominelli, Marco and Cai, Zhongang and Zhang, Yuanhan and Zhang, Peiyuan and Hong, Fangzhou and Widmer, Joerg and Gringoli, Francesco and Yang, Lei and Li, Bo and Liu, Ziwei},
booktitle={The IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2025},
}
Base model
lmms-lab/llava-onevision-qwen2-7b-ov