|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- ja |
|
programming_language: |
|
- C |
|
- C++ |
|
- C# |
|
- Go |
|
- Java |
|
- JavaScript |
|
- Lua |
|
- PHP |
|
- Python |
|
- Ruby |
|
- Rust |
|
- Scala |
|
- TypeScript |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: false |
|
datasets: |
|
- databricks/databricks-dolly-15k |
|
- llm-jp/databricks-dolly-15k-ja |
|
- llm-jp/oasst1-21k-en |
|
- llm-jp/oasst1-21k-ja |
|
- llm-jp/oasst2-33k-en |
|
- llm-jp/oasst2-33k-ja |
|
--- |
|
# llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0 |
|
|
|
This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan. |
|
|
|
| Model Variant | |
|
| :--- | |
|
|**Instruction models**| |
|
| [llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | |
|
| [llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | |
|
| [llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | |
|
|
|
|
|
| | |
|
| :--- | |
|
|**Pre-trained models**| |
|
| [llm-jp-13b-v2.0](https://huggingface.co./llm-jp/llm-jp-13b-v2.0) | |
|
|
|
Checkpoints format: Hugging Face Transformers |
|
|
|
|
|
## Required Libraries and Their Versions |
|
|
|
- torch>=2.3.0 |
|
- transformers>=4.40.1 |
|
- tokenizers>=0.19.1 |
|
- accelerate>=0.29.3 |
|
- flash-attn>=2.5.8 |
|
|
|
## Usage |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0") |
|
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0", device_map="auto", torch_dtype=torch.bfloat16) |
|
chat = [ |
|
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}, |
|
{"role": "user", "content": "自然言語処理とは何か"}, |
|
] |
|
tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
output = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.7, |
|
repetition_penalty=1.05, |
|
)[0] |
|
print(tokenizer.decode(output)) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
- **Model type:** Transformer-based Language Model |
|
- **Total seen tokens:** 256B |
|
|
|
|Model|Params|Layers|Hidden size|Heads|Context length| |
|
|:---:|:---:|:---:|:---:|:---:|:---:| |
|
|13b model|13b|40|5120|40|4096| |
|
|
|
|
|
## Training |
|
|
|
- **Pre-training:** |
|
- **Hardware:** 128 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) |
|
- **Software:** Megatron-LM |
|
|
|
- **Instruction tuning:** |
|
- **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) |
|
- **Software:** [TRL](https://github.com/huggingface/trl) and [DeepSpeed](https://github.com/microsoft/DeepSpeed) |
|
|
|
## Tokenizer |
|
|
|
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. |
|
The vocabulary entries were converted from [`llm-jp-tokenizer v2.2 (100k: code20K_en40K_ja60K.ver2.2)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.2). |
|
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). |
|
|
|
- **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model |
|
- **Training algorithm:** Marging Code/English/Japanese vocabularies constructed with SentencePiece Unigram byte-fallback and reestimating scores with the EM-algorithm. |
|
- **Training data:** A subset of the datasets for model pre-training |
|
- **Vocabulary size:** 96,867 (mixed vocabulary of Japanese, English, and source code) |
|
- The acutal size of vocabulary in the pretrained model is 97,024 due to round-up to multiples of 256. |
|
|
|
|
|
## Datasets |
|
|
|
### Pre-training |
|
|
|
The models have been pre-trained using a blend of the following datasets. |
|
|
|
| Language | Dataset | Tokens| |
|
|:---|:---|---:| |
|
|Japanese|[Wikipedia](https://huggingface.co./datasets/wikipedia)|1.4B |
|
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v2)|130.7B |
|
|English|[Wikipedia](https://huggingface.co./datasets/wikipedia)|4.7B |
|
||[The Pile](https://huggingface.co./datasets/EleutherAI/pile)|110.3B |
|
|Codes|[The Stack](https://huggingface.co./datasets/bigcode/the-stack)|8.7B |
|
|
|
### Instruction tuning |
|
|
|
The models have been fine-tuned on the following datasets. |
|
|
|
| Language | Dataset | description | |
|
|:---|:---|:---| |
|
|Japanese|[ichikara-instruction-004-001](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset | |
|
| |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety | |
|
| |[databricks-dolly-15k-ja](https://huggingface.co./datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co./datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL | |
|
| |[oasst1-21k-ja](https://huggingface.co./datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co./datasets/OpenAssistant/oasst1) translated into Japanese using DeepL | |
|
| |[oasst2-33k-ja](https://huggingface.co./datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co./datasets/OpenAssistant/oasst2) translated into Japanese using DeepL | |
|
|English |[databricks-dolly-15k](https://huggingface.co./datasets/databricks/databricks-dolly-15k) | - | |
|
| |[oasst1-21k-en](https://huggingface.co./datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co./datasets/OpenAssistant/oasst1) | |
|
| |[oasst2-33k-en](https://huggingface.co./datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co./datasets/OpenAssistant/oasst2) | |
|
|
|
## Evaluation |
|
|
|
You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) (v1.3.0) for the evaluation. |
|
|
|
Besides, we used LLM-as-a-judge frameworks, [Japanese Vicuna QA Benchmark](https://github.com/ku-nlp/ja-vicuna-qa-benchmark/) and [Japanese MT Bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge), for evaluation. |
|
For details, please refer to [our technical blog](https://llm-jp.nii.ac.jp/blog/2024/04/30/v2.0-release.html) (in Japanese). |
|
|
|
## Risks and Limitations |
|
|
|
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
|
|
## Send Questions to |
|
|
|
llm-jp(at)nii.ac.jp |
|
|
|
|
|
## License |
|
|
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
|
|
## Model Card Authors |
|
|
|
*The names are listed in alphabetical order.* |
|
|
|
Namgi Han, Tatsuya Hiraoka, Hirokazu Kiyomaru, Takashi Kodama, and Hiroshi Matsuda. |