Visualize in Weights & Biases

gemma7b-summarize-gemini1.5flash-80k

This model is a fine-tuned version of google/gemma-7b on the llama-duo/synth_summarize_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.8742 0.9982 280 2.1938
0.7213 2.0 561 2.1462
0.675 2.9982 841 2.1484
0.6439 4.0 1122 2.2149
0.569 4.9982 1402 2.3224
0.5317 6.0 1683 2.4839
0.472 6.9982 1963 2.6540
0.4306 8.0 2244 2.8791
0.4106 8.9982 2524 3.0011
0.4021 9.9822 2800 3.0229

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for llama-duo/gemma7b-summarize-gemini1.5flash-80k

Base model

google/gemma-7b
Adapter
(9172)
this model

Dataset used to train llama-duo/gemma7b-summarize-gemini1.5flash-80k