distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8192
- Accuracy: {'accuracy': 0.878}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 125 | 0.3417 | {'accuracy': 0.867} |
No log | 2.0 | 250 | 0.2960 | {'accuracy': 0.878} |
No log | 3.0 | 375 | 0.4010 | {'accuracy': 0.875} |
0.2767 | 4.0 | 500 | 0.5766 | {'accuracy': 0.874} |
0.2767 | 5.0 | 625 | 0.6314 | {'accuracy': 0.878} |
0.2767 | 6.0 | 750 | 0.6541 | {'accuracy': 0.883} |
0.2767 | 7.0 | 875 | 0.7353 | {'accuracy': 0.887} |
0.0442 | 8.0 | 1000 | 0.7776 | {'accuracy': 0.883} |
0.0442 | 9.0 | 1125 | 0.8157 | {'accuracy': 0.874} |
0.0442 | 10.0 | 1250 | 0.8192 | {'accuracy': 0.878} |
Framework versions
- PEFT 0.11.1
- Transformers 4.43.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for lizhanyang/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased