Visualize in Weights & Biases

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8192
  • Accuracy: {'accuracy': 0.878}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.3417 {'accuracy': 0.867}
No log 2.0 250 0.2960 {'accuracy': 0.878}
No log 3.0 375 0.4010 {'accuracy': 0.875}
0.2767 4.0 500 0.5766 {'accuracy': 0.874}
0.2767 5.0 625 0.6314 {'accuracy': 0.878}
0.2767 6.0 750 0.6541 {'accuracy': 0.883}
0.2767 7.0 875 0.7353 {'accuracy': 0.887}
0.0442 8.0 1000 0.7776 {'accuracy': 0.883}
0.0442 9.0 1125 0.8157 {'accuracy': 0.874}
0.0442 10.0 1250 0.8192 {'accuracy': 0.878}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lizhanyang/distilbert-base-uncased-lora-text-classification

Adapter
(225)
this model