XLM-3B5-embedding / mteb_metadata.md
rootxsli
fix pair cls bug
e1e0549
metadata
tags:
  - mteb
model-index:
  - name: xlm3b5_step3len260_b128g8_lr1e-5
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 69.01492537313432
          - type: ap
            value: 30.936372983952477
          - type: f1
            value: 62.58864357716914
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 95.088975
          - type: ap
            value: 92.9329025853096
          - type: f1
            value: 95.0864056657106
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 50.524
          - type: f1
            value: 49.93715365750685
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.781
          - type: map_at_10
            value: 30.854
          - type: map_at_100
            value: 32.344
          - type: map_at_1000
            value: 32.364
          - type: map_at_3
            value: 25.711000000000002
          - type: map_at_5
            value: 28.254
          - type: mrr_at_1
            value: 18.563
          - type: mrr_at_10
            value: 31.137999999999998
          - type: mrr_at_100
            value: 32.621
          - type: mrr_at_1000
            value: 32.641
          - type: mrr_at_3
            value: 25.984
          - type: mrr_at_5
            value: 28.53
          - type: ndcg_at_1
            value: 17.781
          - type: ndcg_at_10
            value: 39.206
          - type: ndcg_at_100
            value: 45.751
          - type: ndcg_at_1000
            value: 46.225
          - type: ndcg_at_3
            value: 28.313
          - type: ndcg_at_5
            value: 32.919
          - type: precision_at_1
            value: 17.781
          - type: precision_at_10
            value: 6.65
          - type: precision_at_100
            value: 0.9560000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 11.949
          - type: precision_at_5
            value: 9.417
          - type: recall_at_1
            value: 17.781
          - type: recall_at_10
            value: 66.501
          - type: recall_at_100
            value: 95.59
          - type: recall_at_1000
            value: 99.21799999999999
          - type: recall_at_3
            value: 35.846000000000004
          - type: recall_at_5
            value: 47.083999999999996
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 44.44154312957711
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 34.189712542346385
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 62.72571219134687
          - type: mrr
            value: 76.3612979817966
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 83.62762841254953
          - type: cos_sim_spearman
            value: 80.72111639383013
          - type: euclidean_pearson
            value: 82.63506732956259
          - type: euclidean_spearman
            value: 81.177753304636
          - type: manhattan_pearson
            value: 82.5891836637346
          - type: manhattan_spearman
            value: 81.06811225217339
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 1.422077922077922
          - type: f1
            value: 0.06502366027548179
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 37.82441952130262
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 32.132057843418416
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.23
          - type: map_at_10
            value: 46.763
          - type: map_at_100
            value: 48.454
          - type: map_at_1000
            value: 48.58
          - type: map_at_3
            value: 43.167
          - type: map_at_5
            value: 45.214
          - type: mrr_at_1
            value: 42.775
          - type: mrr_at_10
            value: 53.190000000000005
          - type: mrr_at_100
            value: 53.928
          - type: mrr_at_1000
            value: 53.964
          - type: mrr_at_3
            value: 51.168
          - type: mrr_at_5
            value: 52.434000000000005
          - type: ndcg_at_1
            value: 42.775
          - type: ndcg_at_10
            value: 53.376999999999995
          - type: ndcg_at_100
            value: 58.748
          - type: ndcg_at_1000
            value: 60.461
          - type: ndcg_at_3
            value: 48.929
          - type: ndcg_at_5
            value: 50.99399999999999
          - type: precision_at_1
            value: 42.775
          - type: precision_at_10
            value: 10.428999999999998
          - type: precision_at_100
            value: 1.678
          - type: precision_at_1000
            value: 0.215
          - type: precision_at_3
            value: 23.939
          - type: precision_at_5
            value: 17.082
          - type: recall_at_1
            value: 34.23
          - type: recall_at_10
            value: 64.96300000000001
          - type: recall_at_100
            value: 86.803
          - type: recall_at_1000
            value: 97.917
          - type: recall_at_3
            value: 51.815
          - type: recall_at_5
            value: 57.781000000000006
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.935
          - type: map_at_10
            value: 39.574999999999996
          - type: map_at_100
            value: 40.891
          - type: map_at_1000
            value: 41.043
          - type: map_at_3
            value: 36.248999999999995
          - type: map_at_5
            value: 38.157999999999994
          - type: mrr_at_1
            value: 36.624
          - type: mrr_at_10
            value: 45.241
          - type: mrr_at_100
            value: 46.028000000000006
          - type: mrr_at_1000
            value: 46.082
          - type: mrr_at_3
            value: 42.93
          - type: mrr_at_5
            value: 44.417
          - type: ndcg_at_1
            value: 36.624
          - type: ndcg_at_10
            value: 45.423
          - type: ndcg_at_100
            value: 49.971
          - type: ndcg_at_1000
            value: 52.382
          - type: ndcg_at_3
            value: 41.019
          - type: ndcg_at_5
            value: 43.254
          - type: precision_at_1
            value: 36.624
          - type: precision_at_10
            value: 8.86
          - type: precision_at_100
            value: 1.458
          - type: precision_at_1000
            value: 0.198
          - type: precision_at_3
            value: 20.276
          - type: precision_at_5
            value: 14.573
          - type: recall_at_1
            value: 28.935
          - type: recall_at_10
            value: 55.745999999999995
          - type: recall_at_100
            value: 74.977
          - type: recall_at_1000
            value: 90.505
          - type: recall_at_3
            value: 42.575
          - type: recall_at_5
            value: 48.902
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.828
          - type: map_at_10
            value: 50.888999999999996
          - type: map_at_100
            value: 52.001
          - type: map_at_1000
            value: 52.054
          - type: map_at_3
            value: 47.638999999999996
          - type: map_at_5
            value: 49.423
          - type: mrr_at_1
            value: 44.765
          - type: mrr_at_10
            value: 54.408
          - type: mrr_at_100
            value: 55.116
          - type: mrr_at_1000
            value: 55.144000000000005
          - type: mrr_at_3
            value: 52.038
          - type: mrr_at_5
            value: 53.323
          - type: ndcg_at_1
            value: 44.765
          - type: ndcg_at_10
            value: 56.724
          - type: ndcg_at_100
            value: 61.058
          - type: ndcg_at_1000
            value: 62.125
          - type: ndcg_at_3
            value: 51.324000000000005
          - type: ndcg_at_5
            value: 53.805
          - type: precision_at_1
            value: 44.765
          - type: precision_at_10
            value: 9.248000000000001
          - type: precision_at_100
            value: 1.234
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 23.093
          - type: precision_at_5
            value: 15.799
          - type: recall_at_1
            value: 38.828
          - type: recall_at_10
            value: 70.493
          - type: recall_at_100
            value: 89.293
          - type: recall_at_1000
            value: 96.872
          - type: recall_at_3
            value: 55.74400000000001
          - type: recall_at_5
            value: 61.95
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.085
          - type: map_at_10
            value: 30.070000000000004
          - type: map_at_100
            value: 31.206
          - type: map_at_1000
            value: 31.291999999999998
          - type: map_at_3
            value: 27.011000000000003
          - type: map_at_5
            value: 28.854999999999997
          - type: mrr_at_1
            value: 23.842
          - type: mrr_at_10
            value: 31.755
          - type: mrr_at_100
            value: 32.778
          - type: mrr_at_1000
            value: 32.845
          - type: mrr_at_3
            value: 28.851
          - type: mrr_at_5
            value: 30.574
          - type: ndcg_at_1
            value: 23.842
          - type: ndcg_at_10
            value: 35.052
          - type: ndcg_at_100
            value: 40.550999999999995
          - type: ndcg_at_1000
            value: 42.789
          - type: ndcg_at_3
            value: 29.096
          - type: ndcg_at_5
            value: 32.251000000000005
          - type: precision_at_1
            value: 23.842
          - type: precision_at_10
            value: 5.605
          - type: precision_at_100
            value: 0.877
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 12.316
          - type: precision_at_5
            value: 9.13
          - type: recall_at_1
            value: 22.085
          - type: recall_at_10
            value: 48.815999999999995
          - type: recall_at_100
            value: 74.039
          - type: recall_at_1000
            value: 90.872
          - type: recall_at_3
            value: 33.098
          - type: recall_at_5
            value: 40.647
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.088999999999999
          - type: map_at_10
            value: 21.526
          - type: map_at_100
            value: 22.832
          - type: map_at_1000
            value: 22.958000000000002
          - type: map_at_3
            value: 18.747
          - type: map_at_5
            value: 20.396
          - type: mrr_at_1
            value: 17.662
          - type: mrr_at_10
            value: 25.513
          - type: mrr_at_100
            value: 26.621
          - type: mrr_at_1000
            value: 26.698
          - type: mrr_at_3
            value: 22.658
          - type: mrr_at_5
            value: 24.449
          - type: ndcg_at_1
            value: 17.662
          - type: ndcg_at_10
            value: 26.506999999999998
          - type: ndcg_at_100
            value: 32.782
          - type: ndcg_at_1000
            value: 35.709999999999994
          - type: ndcg_at_3
            value: 21.279
          - type: ndcg_at_5
            value: 23.998
          - type: precision_at_1
            value: 17.662
          - type: precision_at_10
            value: 5.124
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 10.323
          - type: precision_at_5
            value: 8.158999999999999
          - type: recall_at_1
            value: 14.088999999999999
          - type: recall_at_10
            value: 37.874
          - type: recall_at_100
            value: 65.34100000000001
          - type: recall_at_1000
            value: 86.06099999999999
          - type: recall_at_3
            value: 23.738999999999997
          - type: recall_at_5
            value: 30.359
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.75
          - type: map_at_10
            value: 34.156
          - type: map_at_100
            value: 35.638999999999996
          - type: map_at_1000
            value: 35.754999999999995
          - type: map_at_3
            value: 31.047000000000004
          - type: map_at_5
            value: 32.823
          - type: mrr_at_1
            value: 30.991000000000003
          - type: mrr_at_10
            value: 39.509
          - type: mrr_at_100
            value: 40.582
          - type: mrr_at_1000
            value: 40.636
          - type: mrr_at_3
            value: 37.103
          - type: mrr_at_5
            value: 38.503
          - type: ndcg_at_1
            value: 30.991000000000003
          - type: ndcg_at_10
            value: 39.719
          - type: ndcg_at_100
            value: 45.984
          - type: ndcg_at_1000
            value: 48.293
          - type: ndcg_at_3
            value: 34.92
          - type: ndcg_at_5
            value: 37.253
          - type: precision_at_1
            value: 30.991000000000003
          - type: precision_at_10
            value: 7.3340000000000005
          - type: precision_at_100
            value: 1.225
          - type: precision_at_1000
            value: 0.16
          - type: precision_at_3
            value: 16.586000000000002
          - type: precision_at_5
            value: 12.127
          - type: recall_at_1
            value: 24.75
          - type: recall_at_10
            value: 51.113
          - type: recall_at_100
            value: 77.338
          - type: recall_at_1000
            value: 92.764
          - type: recall_at_3
            value: 37.338
          - type: recall_at_5
            value: 43.437
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.158
          - type: map_at_10
            value: 32.877
          - type: map_at_100
            value: 34.226
          - type: map_at_1000
            value: 34.35
          - type: map_at_3
            value: 29.43
          - type: map_at_5
            value: 31.319000000000003
          - type: mrr_at_1
            value: 29.224
          - type: mrr_at_10
            value: 38.080000000000005
          - type: mrr_at_100
            value: 39.04
          - type: mrr_at_1000
            value: 39.097
          - type: mrr_at_3
            value: 35.407
          - type: mrr_at_5
            value: 36.771
          - type: ndcg_at_1
            value: 29.224
          - type: ndcg_at_10
            value: 38.805
          - type: ndcg_at_100
            value: 44.746
          - type: ndcg_at_1000
            value: 47.038000000000004
          - type: ndcg_at_3
            value: 33.269
          - type: ndcg_at_5
            value: 35.611
          - type: precision_at_1
            value: 29.224
          - type: precision_at_10
            value: 7.454
          - type: precision_at_100
            value: 1.221
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 16.134
          - type: precision_at_5
            value: 11.895
          - type: recall_at_1
            value: 23.158
          - type: recall_at_10
            value: 51.487
          - type: recall_at_100
            value: 77.464
          - type: recall_at_1000
            value: 92.525
          - type: recall_at_3
            value: 35.478
          - type: recall_at_5
            value: 41.722
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.456916666666668
          - type: map_at_10
            value: 33.5495
          - type: map_at_100
            value: 34.86808333333333
          - type: map_at_1000
            value: 34.98908333333333
          - type: map_at_3
            value: 30.59158333333334
          - type: map_at_5
            value: 32.24916666666667
          - type: mrr_at_1
            value: 29.387250000000005
          - type: mrr_at_10
            value: 37.73958333333333
          - type: mrr_at_100
            value: 38.6595
          - type: mrr_at_1000
            value: 38.718250000000005
          - type: mrr_at_3
            value: 35.31658333333333
          - type: mrr_at_5
            value: 36.69441666666667
          - type: ndcg_at_1
            value: 29.387250000000005
          - type: ndcg_at_10
            value: 38.910333333333334
          - type: ndcg_at_100
            value: 44.40241666666666
          - type: ndcg_at_1000
            value: 46.72008333333334
          - type: ndcg_at_3
            value: 34.045583333333326
          - type: ndcg_at_5
            value: 36.33725
          - type: precision_at_1
            value: 29.387250000000005
          - type: precision_at_10
            value: 7.034666666666668
          - type: precision_at_100
            value: 1.1698333333333333
          - type: precision_at_1000
            value: 0.15599999999999997
          - type: precision_at_3
            value: 15.866416666666666
          - type: precision_at_5
            value: 11.456333333333331
          - type: recall_at_1
            value: 24.456916666666668
          - type: recall_at_10
            value: 50.47758333333333
          - type: recall_at_100
            value: 74.52275
          - type: recall_at_1000
            value: 90.7105
          - type: recall_at_3
            value: 36.86275
          - type: recall_at_5
            value: 42.76533333333333
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.356
          - type: map_at_10
            value: 25.378
          - type: map_at_100
            value: 26.349
          - type: map_at_1000
            value: 26.451
          - type: map_at_3
            value: 23.403
          - type: map_at_5
            value: 24.614
          - type: mrr_at_1
            value: 22.086
          - type: mrr_at_10
            value: 28.072000000000003
          - type: mrr_at_100
            value: 28.887
          - type: mrr_at_1000
            value: 28.965999999999998
          - type: mrr_at_3
            value: 26.074
          - type: mrr_at_5
            value: 27.293
          - type: ndcg_at_1
            value: 22.086
          - type: ndcg_at_10
            value: 29.107
          - type: ndcg_at_100
            value: 34
          - type: ndcg_at_1000
            value: 36.793
          - type: ndcg_at_3
            value: 25.407999999999998
          - type: ndcg_at_5
            value: 27.375
          - type: precision_at_1
            value: 22.086
          - type: precision_at_10
            value: 4.678
          - type: precision_at_100
            value: 0.7779999999999999
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 10.992
          - type: precision_at_5
            value: 7.853000000000001
          - type: recall_at_1
            value: 19.356
          - type: recall_at_10
            value: 37.913999999999994
          - type: recall_at_100
            value: 60.507999999999996
          - type: recall_at_1000
            value: 81.459
          - type: recall_at_3
            value: 27.874
          - type: recall_at_5
            value: 32.688
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.008
          - type: map_at_10
            value: 22.431
          - type: map_at_100
            value: 23.61
          - type: map_at_1000
            value: 23.743
          - type: map_at_3
            value: 20.358
          - type: map_at_5
            value: 21.371000000000002
          - type: mrr_at_1
            value: 19.752
          - type: mrr_at_10
            value: 26.333000000000002
          - type: mrr_at_100
            value: 27.297
          - type: mrr_at_1000
            value: 27.378000000000004
          - type: mrr_at_3
            value: 24.358
          - type: mrr_at_5
            value: 25.354
          - type: ndcg_at_1
            value: 19.752
          - type: ndcg_at_10
            value: 26.712000000000003
          - type: ndcg_at_100
            value: 32.294
          - type: ndcg_at_1000
            value: 35.410000000000004
          - type: ndcg_at_3
            value: 22.974
          - type: ndcg_at_5
            value: 24.412
          - type: precision_at_1
            value: 19.752
          - type: precision_at_10
            value: 4.986
          - type: precision_at_100
            value: 0.924
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 10.966
          - type: precision_at_5
            value: 7.832
          - type: recall_at_1
            value: 16.008
          - type: recall_at_10
            value: 35.716
          - type: recall_at_100
            value: 60.76200000000001
          - type: recall_at_1000
            value: 83.204
          - type: recall_at_3
            value: 25.092
          - type: recall_at_5
            value: 28.858
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.743000000000002
          - type: map_at_10
            value: 34.492
          - type: map_at_100
            value: 35.716
          - type: map_at_1000
            value: 35.815999999999995
          - type: map_at_3
            value: 31.201
          - type: map_at_5
            value: 32.926
          - type: mrr_at_1
            value: 29.384
          - type: mrr_at_10
            value: 38.333
          - type: mrr_at_100
            value: 39.278
          - type: mrr_at_1000
            value: 39.330999999999996
          - type: mrr_at_3
            value: 35.65
          - type: mrr_at_5
            value: 36.947
          - type: ndcg_at_1
            value: 29.384
          - type: ndcg_at_10
            value: 40.195
          - type: ndcg_at_100
            value: 45.686
          - type: ndcg_at_1000
            value: 47.906
          - type: ndcg_at_3
            value: 34.477000000000004
          - type: ndcg_at_5
            value: 36.89
          - type: precision_at_1
            value: 29.384
          - type: precision_at_10
            value: 7.164
          - type: precision_at_100
            value: 1.111
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_3
            value: 15.983
          - type: precision_at_5
            value: 11.418000000000001
          - type: recall_at_1
            value: 24.743000000000002
          - type: recall_at_10
            value: 53.602000000000004
          - type: recall_at_100
            value: 77.266
          - type: recall_at_1000
            value: 92.857
          - type: recall_at_3
            value: 37.921
          - type: recall_at_5
            value: 44.124
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.531
          - type: map_at_10
            value: 35.933
          - type: map_at_100
            value: 37.913000000000004
          - type: map_at_1000
            value: 38.146
          - type: map_at_3
            value: 32.713
          - type: map_at_5
            value: 34.339999999999996
          - type: mrr_at_1
            value: 32.806000000000004
          - type: mrr_at_10
            value: 41.728
          - type: mrr_at_100
            value: 42.731
          - type: mrr_at_1000
            value: 42.777
          - type: mrr_at_3
            value: 39.065
          - type: mrr_at_5
            value: 40.467999999999996
          - type: ndcg_at_1
            value: 32.806000000000004
          - type: ndcg_at_10
            value: 42.254999999999995
          - type: ndcg_at_100
            value: 48.687999999999995
          - type: ndcg_at_1000
            value: 50.784
          - type: ndcg_at_3
            value: 37.330999999999996
          - type: ndcg_at_5
            value: 39.305
          - type: precision_at_1
            value: 32.806000000000004
          - type: precision_at_10
            value: 8.34
          - type: precision_at_100
            value: 1.7209999999999999
          - type: precision_at_1000
            value: 0.252
          - type: precision_at_3
            value: 17.589
          - type: precision_at_5
            value: 12.845999999999998
          - type: recall_at_1
            value: 26.531
          - type: recall_at_10
            value: 53.266000000000005
          - type: recall_at_100
            value: 81.49499999999999
          - type: recall_at_1000
            value: 94.506
          - type: recall_at_3
            value: 38.848
          - type: recall_at_5
            value: 44.263000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.77
          - type: map_at_10
            value: 28.504
          - type: map_at_100
            value: 29.580000000000002
          - type: map_at_1000
            value: 29.681
          - type: map_at_3
            value: 26.134
          - type: map_at_5
            value: 27.551
          - type: mrr_at_1
            value: 22.736
          - type: mrr_at_10
            value: 30.713
          - type: mrr_at_100
            value: 31.628
          - type: mrr_at_1000
            value: 31.701
          - type: mrr_at_3
            value: 28.497
          - type: mrr_at_5
            value: 29.799999999999997
          - type: ndcg_at_1
            value: 22.736
          - type: ndcg_at_10
            value: 33.048
          - type: ndcg_at_100
            value: 38.321
          - type: ndcg_at_1000
            value: 40.949999999999996
          - type: ndcg_at_3
            value: 28.521
          - type: ndcg_at_5
            value: 30.898999999999997
          - type: precision_at_1
            value: 22.736
          - type: precision_at_10
            value: 5.194
          - type: precision_at_100
            value: 0.86
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 12.2
          - type: precision_at_5
            value: 8.762
          - type: recall_at_1
            value: 20.77
          - type: recall_at_10
            value: 44.741
          - type: recall_at_100
            value: 68.987
          - type: recall_at_1000
            value: 88.984
          - type: recall_at_3
            value: 32.830999999999996
          - type: recall_at_5
            value: 38.452999999999996
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.646
          - type: map_at_10
            value: 17.432
          - type: map_at_100
            value: 19.347
          - type: map_at_1000
            value: 19.555
          - type: map_at_3
            value: 14.355
          - type: map_at_5
            value: 15.83
          - type: mrr_at_1
            value: 21.433
          - type: mrr_at_10
            value: 32.583
          - type: mrr_at_100
            value: 33.708
          - type: mrr_at_1000
            value: 33.751999999999995
          - type: mrr_at_3
            value: 28.979
          - type: mrr_at_5
            value: 30.979
          - type: ndcg_at_1
            value: 21.433
          - type: ndcg_at_10
            value: 25.025
          - type: ndcg_at_100
            value: 32.818999999999996
          - type: ndcg_at_1000
            value: 36.549
          - type: ndcg_at_3
            value: 19.689
          - type: ndcg_at_5
            value: 21.462
          - type: precision_at_1
            value: 21.433
          - type: precision_at_10
            value: 8.085
          - type: precision_at_100
            value: 1.6340000000000001
          - type: precision_at_1000
            value: 0.233
          - type: precision_at_3
            value: 14.832
          - type: precision_at_5
            value: 11.530999999999999
          - type: recall_at_1
            value: 9.646
          - type: recall_at_10
            value: 31.442999999999998
          - type: recall_at_100
            value: 58.48
          - type: recall_at_1000
            value: 79.253
          - type: recall_at_3
            value: 18.545
          - type: recall_at_5
            value: 23.362
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.48
          - type: map_at_10
            value: 18.127
          - type: map_at_100
            value: 25.563999999999997
          - type: map_at_1000
            value: 27.386
          - type: map_at_3
            value: 13.189
          - type: map_at_5
            value: 15.417
          - type: mrr_at_1
            value: 63.74999999999999
          - type: mrr_at_10
            value: 71.34899999999999
          - type: mrr_at_100
            value: 71.842
          - type: mrr_at_1000
            value: 71.851
          - type: mrr_at_3
            value: 69.167
          - type: mrr_at_5
            value: 70.479
          - type: ndcg_at_1
            value: 51.87500000000001
          - type: ndcg_at_10
            value: 38.792
          - type: ndcg_at_100
            value: 43.889
          - type: ndcg_at_1000
            value: 51.561
          - type: ndcg_at_3
            value: 42.686
          - type: ndcg_at_5
            value: 40.722
          - type: precision_at_1
            value: 63.74999999999999
          - type: precision_at_10
            value: 30.375000000000004
          - type: precision_at_100
            value: 10.103
          - type: precision_at_1000
            value: 2.257
          - type: precision_at_3
            value: 45.167
          - type: precision_at_5
            value: 38.95
          - type: recall_at_1
            value: 8.48
          - type: recall_at_10
            value: 23.008
          - type: recall_at_100
            value: 48.875
          - type: recall_at_1000
            value: 73.402
          - type: recall_at_3
            value: 14.377
          - type: recall_at_5
            value: 17.819
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 47.605
          - type: f1
            value: 42.345081371303316
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 62.247
          - type: map_at_10
            value: 72.782
          - type: map_at_100
            value: 73.095
          - type: map_at_1000
            value: 73.112
          - type: map_at_3
            value: 70.928
          - type: map_at_5
            value: 72.173
          - type: mrr_at_1
            value: 67.372
          - type: mrr_at_10
            value: 77.538
          - type: mrr_at_100
            value: 77.741
          - type: mrr_at_1000
            value: 77.74600000000001
          - type: mrr_at_3
            value: 75.938
          - type: mrr_at_5
            value: 77.054
          - type: ndcg_at_1
            value: 67.372
          - type: ndcg_at_10
            value: 78.001
          - type: ndcg_at_100
            value: 79.295
          - type: ndcg_at_1000
            value: 79.648
          - type: ndcg_at_3
            value: 74.71
          - type: ndcg_at_5
            value: 76.712
          - type: precision_at_1
            value: 67.372
          - type: precision_at_10
            value: 9.844999999999999
          - type: precision_at_100
            value: 1.065
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 29.308
          - type: precision_at_5
            value: 18.731
          - type: recall_at_1
            value: 62.247
          - type: recall_at_10
            value: 89.453
          - type: recall_at_100
            value: 94.998
          - type: recall_at_1000
            value: 97.385
          - type: recall_at_3
            value: 80.563
          - type: recall_at_5
            value: 85.58099999999999
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.587
          - type: map_at_10
            value: 37.316
          - type: map_at_100
            value: 39.542
          - type: map_at_1000
            value: 39.701
          - type: map_at_3
            value: 32.332
          - type: map_at_5
            value: 35.172
          - type: mrr_at_1
            value: 42.437999999999995
          - type: mrr_at_10
            value: 51.98500000000001
          - type: mrr_at_100
            value: 52.910999999999994
          - type: mrr_at_1000
            value: 52.944
          - type: mrr_at_3
            value: 49.691
          - type: mrr_at_5
            value: 51.15
          - type: ndcg_at_1
            value: 42.437999999999995
          - type: ndcg_at_10
            value: 45.016
          - type: ndcg_at_100
            value: 52.541000000000004
          - type: ndcg_at_1000
            value: 54.99699999999999
          - type: ndcg_at_3
            value: 41.175
          - type: ndcg_at_5
            value: 42.647
          - type: precision_at_1
            value: 42.437999999999995
          - type: precision_at_10
            value: 12.855
          - type: precision_at_100
            value: 2.049
          - type: precision_at_1000
            value: 0.247
          - type: precision_at_3
            value: 27.675
          - type: precision_at_5
            value: 20.617
          - type: recall_at_1
            value: 22.587
          - type: recall_at_10
            value: 51.547
          - type: recall_at_100
            value: 78.88
          - type: recall_at_1000
            value: 93.741
          - type: recall_at_3
            value: 37.256
          - type: recall_at_5
            value: 44.295
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.451
          - type: map_at_10
            value: 48.082
          - type: map_at_100
            value: 49.08
          - type: map_at_1000
            value: 49.163000000000004
          - type: map_at_3
            value: 44.766
          - type: map_at_5
            value: 46.722
          - type: mrr_at_1
            value: 64.902
          - type: mrr_at_10
            value: 72.195
          - type: mrr_at_100
            value: 72.572
          - type: mrr_at_1000
            value: 72.589
          - type: mrr_at_3
            value: 70.774
          - type: mrr_at_5
            value: 71.611
          - type: ndcg_at_1
            value: 64.902
          - type: ndcg_at_10
            value: 57.14399999999999
          - type: ndcg_at_100
            value: 60.916000000000004
          - type: ndcg_at_1000
            value: 62.649
          - type: ndcg_at_3
            value: 52.09
          - type: ndcg_at_5
            value: 54.70399999999999
          - type: precision_at_1
            value: 64.902
          - type: precision_at_10
            value: 12.136
          - type: precision_at_100
            value: 1.51
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 32.933
          - type: precision_at_5
            value: 21.823
          - type: recall_at_1
            value: 32.451
          - type: recall_at_10
            value: 60.682
          - type: recall_at_100
            value: 75.523
          - type: recall_at_1000
            value: 87.063
          - type: recall_at_3
            value: 49.399
          - type: recall_at_5
            value: 54.55799999999999
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 89.48759999999997
          - type: ap
            value: 85.15533983465178
          - type: f1
            value: 89.46732838870311
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 17.942
          - type: map_at_10
            value: 29.755
          - type: map_at_100
            value: 31.008000000000003
          - type: map_at_1000
            value: 31.067
          - type: map_at_3
            value: 25.959
          - type: map_at_5
            value: 28.044999999999998
          - type: mrr_at_1
            value: 18.467
          - type: mrr_at_10
            value: 30.253000000000004
          - type: mrr_at_100
            value: 31.461
          - type: mrr_at_1000
            value: 31.513
          - type: mrr_at_3
            value: 26.528000000000002
          - type: mrr_at_5
            value: 28.588
          - type: ndcg_at_1
            value: 18.467
          - type: ndcg_at_10
            value: 36.510999999999996
          - type: ndcg_at_100
            value: 42.748999999999995
          - type: ndcg_at_1000
            value: 44.188
          - type: ndcg_at_3
            value: 28.752
          - type: ndcg_at_5
            value: 32.462
          - type: precision_at_1
            value: 18.467
          - type: precision_at_10
            value: 6.006
          - type: precision_at_100
            value: 0.9169999999999999
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 12.55
          - type: precision_at_5
            value: 9.395000000000001
          - type: recall_at_1
            value: 17.942
          - type: recall_at_10
            value: 57.440000000000005
          - type: recall_at_100
            value: 86.66199999999999
          - type: recall_at_1000
            value: 97.613
          - type: recall_at_3
            value: 36.271
          - type: recall_at_5
            value: 45.167
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 36.3657090743274
          - type: f1
            value: 27.22838800222161
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 1.0168718650250799
          - type: f1
            value: 0.0674636098084213
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 1.8829858776059176
          - type: f1
            value: 0.08021151737444676
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 8.681909885675857
          - type: f1
            value: 2.752826896423761
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.88016176143737
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 32.07643038274053
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.81344342001539
          - type: mrr
            value: 31.82078962760685
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.617
          - type: map_at_10
            value: 11.501
          - type: map_at_100
            value: 14.729999999999999
          - type: map_at_1000
            value: 16.209
          - type: map_at_3
            value: 8.275
          - type: map_at_5
            value: 9.853000000000002
          - type: mrr_at_1
            value: 41.486000000000004
          - type: mrr_at_10
            value: 51.471999999999994
          - type: mrr_at_100
            value: 52.020999999999994
          - type: mrr_at_1000
            value: 52.066
          - type: mrr_at_3
            value: 49.484
          - type: mrr_at_5
            value: 50.660000000000004
          - type: ndcg_at_1
            value: 38.854
          - type: ndcg_at_10
            value: 31.567
          - type: ndcg_at_100
            value: 29.842999999999996
          - type: ndcg_at_1000
            value: 38.995000000000005
          - type: ndcg_at_3
            value: 36.785000000000004
          - type: ndcg_at_5
            value: 34.955000000000005
          - type: precision_at_1
            value: 40.867
          - type: precision_at_10
            value: 23.591
          - type: precision_at_100
            value: 7.771
          - type: precision_at_1000
            value: 2.11
          - type: precision_at_3
            value: 35.397
          - type: precision_at_5
            value: 30.959999999999997
          - type: recall_at_1
            value: 4.617
          - type: recall_at_10
            value: 15.609
          - type: recall_at_100
            value: 31.313999999999997
          - type: recall_at_1000
            value: 63.085
          - type: recall_at_3
            value: 9.746
          - type: recall_at_5
            value: 12.295
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.797
          - type: map_at_10
            value: 44.822
          - type: map_at_100
            value: 45.891999999999996
          - type: map_at_1000
            value: 45.919
          - type: map_at_3
            value: 40.237
          - type: map_at_5
            value: 42.913000000000004
          - type: mrr_at_1
            value: 32.561
          - type: mrr_at_10
            value: 46.982
          - type: mrr_at_100
            value: 47.827
          - type: mrr_at_1000
            value: 47.843999999999994
          - type: mrr_at_3
            value: 43.26
          - type: mrr_at_5
            value: 45.527
          - type: ndcg_at_1
            value: 32.532
          - type: ndcg_at_10
            value: 52.832
          - type: ndcg_at_100
            value: 57.343999999999994
          - type: ndcg_at_1000
            value: 57.93899999999999
          - type: ndcg_at_3
            value: 44.246
          - type: ndcg_at_5
            value: 48.698
          - type: precision_at_1
            value: 32.532
          - type: precision_at_10
            value: 9.003
          - type: precision_at_100
            value: 1.1480000000000001
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 20.605999999999998
          - type: precision_at_5
            value: 14.954
          - type: recall_at_1
            value: 28.797
          - type: recall_at_10
            value: 75.065
          - type: recall_at_100
            value: 94.6
          - type: recall_at_1000
            value: 98.967
          - type: recall_at_3
            value: 52.742
          - type: recall_at_5
            value: 63.012
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 69.84700000000001
          - type: map_at_10
            value: 83.91499999999999
          - type: map_at_100
            value: 84.568
          - type: map_at_1000
            value: 84.584
          - type: map_at_3
            value: 80.87299999999999
          - type: map_at_5
            value: 82.76299999999999
          - type: mrr_at_1
            value: 80.4
          - type: mrr_at_10
            value: 86.843
          - type: mrr_at_100
            value: 86.956
          - type: mrr_at_1000
            value: 86.957
          - type: mrr_at_3
            value: 85.843
          - type: mrr_at_5
            value: 86.521
          - type: ndcg_at_1
            value: 80.4
          - type: ndcg_at_10
            value: 87.787
          - type: ndcg_at_100
            value: 89.039
          - type: ndcg_at_1000
            value: 89.137
          - type: ndcg_at_3
            value: 84.76700000000001
          - type: ndcg_at_5
            value: 86.413
          - type: precision_at_1
            value: 80.4
          - type: precision_at_10
            value: 13.391
          - type: precision_at_100
            value: 1.533
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.123
          - type: precision_at_5
            value: 24.462
          - type: recall_at_1
            value: 69.84700000000001
          - type: recall_at_10
            value: 95.296
          - type: recall_at_100
            value: 99.543
          - type: recall_at_1000
            value: 99.98700000000001
          - type: recall_at_3
            value: 86.75
          - type: recall_at_5
            value: 91.33099999999999
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 54.24501738730203
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 61.28243705082983
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.473
          - type: map_at_10
            value: 8.944
          - type: map_at_100
            value: 11.21
          - type: map_at_1000
            value: 11.601
          - type: map_at_3
            value: 6.167
          - type: map_at_5
            value: 7.438000000000001
          - type: mrr_at_1
            value: 17.1
          - type: mrr_at_10
            value: 26.487
          - type: mrr_at_100
            value: 27.888
          - type: mrr_at_1000
            value: 27.961000000000002
          - type: mrr_at_3
            value: 23.25
          - type: mrr_at_5
            value: 24.91
          - type: ndcg_at_1
            value: 17.1
          - type: ndcg_at_10
            value: 15.615000000000002
          - type: ndcg_at_100
            value: 24.667
          - type: ndcg_at_1000
            value: 31.467
          - type: ndcg_at_3
            value: 14.035
          - type: ndcg_at_5
            value: 12.443
          - type: precision_at_1
            value: 17.1
          - type: precision_at_10
            value: 8.4
          - type: precision_at_100
            value: 2.149
          - type: precision_at_1000
            value: 0.378
          - type: precision_at_3
            value: 13.200000000000001
          - type: precision_at_5
            value: 11.06
          - type: recall_at_1
            value: 3.473
          - type: recall_at_10
            value: 17.087
          - type: recall_at_100
            value: 43.641999999999996
          - type: recall_at_1000
            value: 76.7
          - type: recall_at_3
            value: 8.037999999999998
          - type: recall_at_5
            value: 11.232000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 86.07032781899852
          - type: cos_sim_spearman
            value: 81.86668245459153
          - type: euclidean_pearson
            value: 83.75572948495356
          - type: euclidean_spearman
            value: 81.88575221829207
          - type: manhattan_pearson
            value: 83.73171218997966
          - type: manhattan_spearman
            value: 81.85928771458329
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 80.29008828604368
          - type: cos_sim_spearman
            value: 70.7510437896188
          - type: euclidean_pearson
            value: 76.65867322096001
          - type: euclidean_spearman
            value: 70.53984435296805
          - type: manhattan_pearson
            value: 76.6398826461678
          - type: manhattan_spearman
            value: 70.55153706770477
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 83.55610063096913
          - type: cos_sim_spearman
            value: 84.36676850545378
          - type: euclidean_pearson
            value: 82.81438612985889
          - type: euclidean_spearman
            value: 84.182693686057
          - type: manhattan_pearson
            value: 82.8355239074719
          - type: manhattan_spearman
            value: 84.19280249146543
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 78.94275022740113
          - type: cos_sim_spearman
            value: 74.50851813226338
          - type: euclidean_pearson
            value: 77.30867917552419
          - type: euclidean_spearman
            value: 74.55661368823343
          - type: manhattan_pearson
            value: 77.31883134876524
          - type: manhattan_spearman
            value: 74.58999819014154
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 85.62907185533146
          - type: cos_sim_spearman
            value: 86.40667080261993
          - type: euclidean_pearson
            value: 85.15184748925726
          - type: euclidean_spearman
            value: 86.33853519247509
          - type: manhattan_pearson
            value: 85.21542426870172
          - type: manhattan_spearman
            value: 86.4076178438401
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 83.42449758804275
          - type: cos_sim_spearman
            value: 84.7411616479609
          - type: euclidean_pearson
            value: 83.56616729612806
          - type: euclidean_spearman
            value: 84.44493050289694
          - type: manhattan_pearson
            value: 83.50906591764574
          - type: manhattan_spearman
            value: 84.39704993090794
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.84843806728331
          - type: cos_sim_spearman
            value: 89.03139214250334
          - type: euclidean_pearson
            value: 89.63615835813032
          - type: euclidean_spearman
            value: 89.33022202130817
          - type: manhattan_pearson
            value: 89.67071925715891
          - type: manhattan_spearman
            value: 89.29339683171531
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 65.65559857216783
          - type: cos_sim_spearman
            value: 65.86805861979079
          - type: euclidean_pearson
            value: 66.69697475461513
          - type: euclidean_spearman
            value: 66.07735691378713
          - type: manhattan_pearson
            value: 66.63427637906918
          - type: manhattan_spearman
            value: 65.95720565040364
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 86.06435608928308
          - type: cos_sim_spearman
            value: 86.46139340079428
          - type: euclidean_pearson
            value: 86.4874804471064
          - type: euclidean_spearman
            value: 86.19390771731406
          - type: manhattan_pearson
            value: 86.51184704840284
          - type: manhattan_spearman
            value: 86.19094101171963
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 85.10723925640346
          - type: mrr
            value: 95.62579305226365
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 56.233
          - type: map_at_10
            value: 64.94
          - type: map_at_100
            value: 65.508
          - type: map_at_1000
            value: 65.537
          - type: map_at_3
            value: 62.121
          - type: map_at_5
            value: 63.92400000000001
          - type: mrr_at_1
            value: 58.667
          - type: mrr_at_10
            value: 66.352
          - type: mrr_at_100
            value: 66.751
          - type: mrr_at_1000
            value: 66.777
          - type: mrr_at_3
            value: 64.22200000000001
          - type: mrr_at_5
            value: 65.656
          - type: ndcg_at_1
            value: 58.667
          - type: ndcg_at_10
            value: 69.318
          - type: ndcg_at_100
            value: 71.822
          - type: ndcg_at_1000
            value: 72.578
          - type: ndcg_at_3
            value: 64.532
          - type: ndcg_at_5
            value: 67.292
          - type: precision_at_1
            value: 58.667
          - type: precision_at_10
            value: 9.133
          - type: precision_at_100
            value: 1.05
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 24.889
          - type: precision_at_5
            value: 16.733
          - type: recall_at_1
            value: 56.233
          - type: recall_at_10
            value: 81.206
          - type: recall_at_100
            value: 92.80000000000001
          - type: recall_at_1000
            value: 98.667
          - type: recall_at_3
            value: 68.672
          - type: recall_at_5
            value: 75.378
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.56336633663366
          - type: cos_sim_ap
            value: 86.13024319858586
          - type: cos_sim_f1
            value: 76.80157946692991
          - type: cos_sim_precision
            value: 75.82846003898635
          - type: cos_sim_recall
            value: 77.8
          - type: dot_accuracy
            value: 99.56336633663366
          - type: dot_ap
            value: 86.13028343072267
          - type: dot_f1
            value: 76.80157946692991
          - type: dot_precision
            value: 75.82846003898635
          - type: dot_recall
            value: 77.8
          - type: euclidean_accuracy
            value: 99.56336633663366
          - type: euclidean_ap
            value: 86.13029040641543
          - type: euclidean_f1
            value: 76.80157946692991
          - type: euclidean_precision
            value: 75.82846003898635
          - type: euclidean_recall
            value: 77.8
          - type: manhattan_accuracy
            value: 99.56534653465347
          - type: manhattan_ap
            value: 86.24817068330776
          - type: manhattan_f1
            value: 77.13580246913581
          - type: manhattan_precision
            value: 76.19512195121952
          - type: manhattan_recall
            value: 78.10000000000001
          - type: max_accuracy
            value: 99.56534653465347
          - type: max_ap
            value: 86.24817068330776
          - type: max_f1
            value: 77.13580246913581
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 64.69564559409538
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 34.23127531581388
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.845357053686975
          - type: mrr
            value: 50.59803656311009
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 29.02241691876377
          - type: cos_sim_spearman
            value: 29.017719340560923
          - type: dot_pearson
            value: 29.59373129445045
          - type: dot_spearman
            value: 29.616196388331968
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.157
          - type: map_at_10
            value: 0.9440000000000001
          - type: map_at_100
            value: 4.61
          - type: map_at_1000
            value: 11.488
          - type: map_at_3
            value: 0.396
          - type: map_at_5
            value: 0.569
          - type: mrr_at_1
            value: 57.99999999999999
          - type: mrr_at_10
            value: 71.672
          - type: mrr_at_100
            value: 71.707
          - type: mrr_at_1000
            value: 71.707
          - type: mrr_at_3
            value: 68.333
          - type: mrr_at_5
            value: 70.533
          - type: ndcg_at_1
            value: 54
          - type: ndcg_at_10
            value: 45.216
          - type: ndcg_at_100
            value: 32.623999999999995
          - type: ndcg_at_1000
            value: 33.006
          - type: ndcg_at_3
            value: 51.76500000000001
          - type: ndcg_at_5
            value: 47.888999999999996
          - type: precision_at_1
            value: 57.99999999999999
          - type: precision_at_10
            value: 48
          - type: precision_at_100
            value: 32.74
          - type: precision_at_1000
            value: 14.588000000000001
          - type: precision_at_3
            value: 55.333
          - type: precision_at_5
            value: 51.2
          - type: recall_at_1
            value: 0.157
          - type: recall_at_10
            value: 1.212
          - type: recall_at_100
            value: 7.868
          - type: recall_at_1000
            value: 31.583
          - type: recall_at_3
            value: 0.443
          - type: recall_at_5
            value: 0.6779999999999999
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.545
          - type: map_at_10
            value: 4.6690000000000005
          - type: map_at_100
            value: 8.982
          - type: map_at_1000
            value: 10.453999999999999
          - type: map_at_3
            value: 2.35
          - type: map_at_5
            value: 3.168
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 28.599999999999998
          - type: mrr_at_100
            value: 30.287
          - type: mrr_at_1000
            value: 30.339
          - type: mrr_at_3
            value: 24.490000000000002
          - type: mrr_at_5
            value: 27.040999999999997
          - type: ndcg_at_1
            value: 17.347
          - type: ndcg_at_10
            value: 13.868
          - type: ndcg_at_100
            value: 25.499
          - type: ndcg_at_1000
            value: 37.922
          - type: ndcg_at_3
            value: 13.746
          - type: ndcg_at_5
            value: 13.141
          - type: precision_at_1
            value: 18.367
          - type: precision_at_10
            value: 12.653
          - type: precision_at_100
            value: 5.776
          - type: precision_at_1000
            value: 1.3860000000000001
          - type: precision_at_3
            value: 13.605
          - type: precision_at_5
            value: 13.061
          - type: recall_at_1
            value: 1.545
          - type: recall_at_10
            value: 9.305
          - type: recall_at_100
            value: 38.084
          - type: recall_at_1000
            value: 75.897
          - type: recall_at_3
            value: 2.903
          - type: recall_at_5
            value: 4.8919999999999995
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.23839999999998
          - type: ap
            value: 14.810293385203243
          - type: f1
            value: 55.08401453918053
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 58.21448783248444
          - type: f1
            value: 58.57246320620639
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 49.314744135178934
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 84.13899982118377
          - type: cos_sim_ap
            value: 68.03329474978145
          - type: cos_sim_f1
            value: 63.31192005710206
          - type: cos_sim_precision
            value: 57.6473136915078
          - type: cos_sim_recall
            value: 70.21108179419525
          - type: dot_accuracy
            value: 84.13899982118377
          - type: dot_ap
            value: 68.03324775052695
          - type: dot_f1
            value: 63.31192005710206
          - type: dot_precision
            value: 57.6473136915078
          - type: dot_recall
            value: 70.21108179419525
          - type: euclidean_accuracy
            value: 84.13899982118377
          - type: euclidean_ap
            value: 68.03331114508686
          - type: euclidean_f1
            value: 63.31192005710206
          - type: euclidean_precision
            value: 57.6473136915078
          - type: euclidean_recall
            value: 70.21108179419525
          - type: manhattan_accuracy
            value: 84.12111819753234
          - type: manhattan_ap
            value: 67.97378509663328
          - type: manhattan_f1
            value: 63.38468945594607
          - type: manhattan_precision
            value: 58.2779991146525
          - type: manhattan_recall
            value: 69.47229551451187
          - type: max_accuracy
            value: 84.13899982118377
          - type: max_ap
            value: 68.03331114508686
          - type: max_f1
            value: 63.38468945594607
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.68774013272791
          - type: cos_sim_ap
            value: 83.51733662214374
          - type: cos_sim_f1
            value: 75.82190771045259
          - type: cos_sim_precision
            value: 72.72341628959276
          - type: cos_sim_recall
            value: 79.19618109023713
          - type: dot_accuracy
            value: 87.68774013272791
          - type: dot_ap
            value: 83.5173527754126
          - type: dot_f1
            value: 75.82190771045259
          - type: dot_precision
            value: 72.72341628959276
          - type: dot_recall
            value: 79.19618109023713
          - type: euclidean_accuracy
            value: 87.68774013272791
          - type: euclidean_ap
            value: 83.51734651146224
          - type: euclidean_f1
            value: 75.82190771045259
          - type: euclidean_precision
            value: 72.72341628959276
          - type: euclidean_recall
            value: 79.19618109023713
          - type: manhattan_accuracy
            value: 87.67221640082276
          - type: manhattan_ap
            value: 83.51179463759505
          - type: manhattan_f1
            value: 75.76243980738361
          - type: manhattan_precision
            value: 71.99112590127565
          - type: manhattan_recall
            value: 79.95072374499537
          - type: max_accuracy
            value: 87.68774013272791
          - type: max_ap
            value: 83.5173527754126
          - type: max_f1
            value: 75.82190771045259