liqi03's picture
Upload tokenizer
8794229 verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - tr
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 tr Fleurs - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: tr_tr
          split: None
          args: 'config: tr split: test'
        metrics:
          - type: wer
            value: 649.9222153080274
            name: Wer

Whisper Large V3 tr Fleurs - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1432
  • Wer: 649.9222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0466 2.7933 500 0.1060 147.9932
0.006 5.5866 1000 0.1208 481.1605
0.0017 8.3799 1500 0.1291 602.0769
0.0012 11.1732 2000 0.1288 627.3647
0.0002 13.9665 2500 0.1382 641.4203
0.0001 16.7598 3000 0.1411 647.7520
0.0001 19.5531 3500 0.1426 642.9294
0.0001 22.3464 4000 0.1432 649.9222

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1