liqi03's picture
Upload tokenizer
54e1c91 verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - pl
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 pl - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: pl
          split: None
          args: 'config: pl split: test'
        metrics:
          - type: wer
            value: 614.9727204417002
            name: Wer

Whisper Large V3 pl - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1865
  • Wer: 614.9727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1328 0.6439 1000 0.2206 275.0400
0.0517 1.2878 2000 0.2183 668.6775
0.0501 1.9317 3000 0.1740 468.4439
0.022 2.5757 4000 0.1865 614.9727

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1