metadata
base_model: openai/whisper-large-v3
datasets:
- google/fleurs
language:
- pl
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Large V3 pl Fleurs Aug 2 - Chee Li
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Google Fleurs
type: google/fleurs
config: pl_pl
split: None
args: 'config: pl split: test'
metrics:
- type: wer
value: 402.6139222812413
name: Wer
Whisper Large V3 pl Fleurs Aug 2 - Chee Li
This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.1295
- Wer: 402.6139
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- training_steps: 6000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0563 | 1.2579 | 1000 | 0.1102 | 448.8748 |
0.0144 | 2.5157 | 2000 | 0.1207 | 354.0117 |
0.0035 | 3.7736 | 3000 | 0.1205 | 514.6701 |
0.0009 | 5.0314 | 4000 | 0.1263 | 391.4104 |
0.0003 | 6.2893 | 5000 | 0.1280 | 385.1901 |
0.0001 | 7.5472 | 6000 | 0.1295 | 402.6139 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1