liqi03's picture
End of training
d1a7fdf verified
|
raw
history blame
2.06 kB
metadata
language:
  - pl
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Large V3 pl Fleurs Aug - Chee Li
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: pl_pl
          split: None
          args: 'config: pl split: test'
        metrics:
          - name: Wer
            type: wer
            value: 281.1154598825832

Whisper Large V3 pl Fleurs Aug - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1225
  • Wer: 281.1155

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0502 1.2579 1000 0.1122 224.0774
0.0099 2.5157 2000 0.1146 344.2200
0.0033 3.7736 3000 0.1187 283.3869
0.0005 5.0314 4000 0.1225 281.1155

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1