liqi03's picture
Upload tokenizer
9fca7e2 verified
|
raw
history blame
2.04 kB
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - fa
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 fa ft - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: fa_ir
          split: None
          args: 'config: fa split: test'
        metrics:
          - type: wer
            value: 30.854777578296428
            name: Wer

Whisper Large V3 fa ft - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2141
  • Wer: 30.8548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0755 4.6083 1000 0.1422 20.4518
0.0144 9.2166 2000 0.1790 28.1817
0.0036 13.8249 3000 0.2039 28.6605
0.0033 18.4332 4000 0.2141 30.8548

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1