liqi03's picture
Upload tokenizer
84046ad verified
|
raw
history blame
2.04 kB
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - fa
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 fa fleurs- Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: fa_ir
          split: None
          args: 'config: fa split: test'
        metrics:
          - type: wer
            value: 33.074139280125195
            name: Wer

Whisper Large V3 fa fleurs- Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1409
  • Wer: 33.0741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 125
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1605 1.1521 250 0.1698 16.5640
0.1076 2.3041 500 0.1445 26.3351
0.0938 3.4562 750 0.1406 34.2381
0.088 4.6083 1000 0.1409 33.0741

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1