liqi03's picture
End of training
1e58e9b verified
|
raw
history blame
2.04 kB
metadata
language:
  - fa
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Large V3 fa fleurs- Chee Li
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: fa_ir
          split: None
          args: 'config: fa split: test'
        metrics:
          - name: Wer
            type: wer
            value: 33.074139280125195

Whisper Large V3 fa fleurs- Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1409
  • Wer: 33.0741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 125
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1605 1.1521 250 0.1698 16.5640
0.1076 2.3041 500 0.1445 26.3351
0.0938 3.4562 750 0.1406 34.2381
0.088 4.6083 1000 0.1409 33.0741

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1