huggy_dora_v2 / README.md
linoyts's picture
linoyts HF staff
End of training
b8921a8 verified
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- dora
- template:sd-lora
widget:
- text: 'a TOK emoji dressed as an easter bunny'
output:
url:
"image_0.png"
- text: 'a TOK emoji dressed as an easter bunny'
output:
url:
"image_1.png"
- text: 'a TOK emoji dressed as an easter bunny'
output:
url:
"image_2.png"
- text: 'a TOK emoji dressed as an easter bunny'
output:
url:
"image_3.png"
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a TOK emoji
license: openrail++
---
# SDXL LoRA DreamBooth - linoyts/huggy_dora_v2
<Gallery />
## Model description
### These are linoyts/huggy_dora_v2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`huggy_dora_v2.safetensors` here 💾](/linoyts/huggy_dora_v2/blob/main/huggy_dora_v2.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:huggy_dora_v2:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('linoyts/huggy_dora_v2', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('a TOK emoji dressed as an easter bunny').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co./docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
You should use a TOK emoji to trigger the image generation.
## Details
All [Files & versions](/linoyts/huggy_dora_v2/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.